An Introduction to Differentiable Manifolds and Riemannian Geometry
eBook - PDF

An Introduction to Differentiable Manifolds and Riemannian Geometry

  1. 429 pages
  2. English
  3. PDF
  4. Available on iOS & Android
eBook - PDF

An Introduction to Differentiable Manifolds and Riemannian Geometry

About this book

An Introduction to Differentiable Manifolds and Riemannian Geometry

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access An Introduction to Differentiable Manifolds and Riemannian Geometry by William M. Boothby in PDF and/or ePUB format, as well as other popular books in Mathematics & Number Theory. We have over one million books available in our catalogue for you to explore.

Information

Year
1986
Print ISBN
9780121160524
eBook ISBN
9780080874395
Edition
2
INTRODUCTION 
TO 
MANIFOLDS 
In 
this 
chapter, 
we 
establish 
some 
preliminary 
notations 
and 
give 
an 
intuitive, 
geometric 
discussion 
of 
number 
of 
examples 
of 
manifolds-the 
primary 
objects 
of 
study 
throughout 
the 
book. 
Most 
of 
these 
examples 
are 
surfaces 
in 
Euclidean 
space; 
for 
these-together 
with 
curves 
on 
the 
plane 
and 
in 
space-were 
the 
original 
objects 
of 
study 
in 
classical 
differential 
geometry 
and 
are 
the 
source 
of 
much 
of 
the 
current 
theory. 
The 
first 
two 
sections 
deal 
primarily 
with 
notational 
matters 
and 
the 
relation 
between 
Euclidean 
space, 
its 
model 
R", 
and 
real 
vector 
spaces. 
In 
Section 
precise 
definition 
of 
topological 
manifolds 
is 
given, 
and 
in 
the 
remaining 
sections 
this 
concept 
is 
illustrated. 
Preliminary 
Comments 
on 
R" 
Let 
denote 
the 
real 
numbers 
and 
R" 
their 
n-fold 
Cartesian 
product 
R-, 
the 
set 
of 
all 
ordered 
n-tuples 
(x', 
... 
x") 
of 
real 
numbers. 
Individual 
n- 
tuples 
may 
be 
denoted 
at 
times 
by 
single 
letter. 
Thus 
(x', 
..., 
x"), 
(a', 
..., 
a"), 
and 
so 
on. 
We 
agree 
once 
and 
for 
all 
to 
use 
on 
R" 
its 
topology 
as 
metric 
space 
with 
the 
metric 
defined 
by 

Table of contents

  1. Front Cover
  2. An Introduction to Differentiable Manifolds and Riemannian Geometry
  3. Copyright Page
  4. Contents
  5. Preface to the Second Edition
  6. Preface to the First Edition
  7. Chapter I. Introduction to Manifolds
  8. Chapter II. Functions of Several Variables and Mappings
  9. Chapter III. Differentiable Manifolds and Submanifolds
  10. Chapter IV. Vector Fields on a Manifold
  11. Chapter V. Tensors and Tensor Fields on Manifolds
  12. Chapter VI. Integration on Manifolds
  13. Chapter VII. Differentiation on Riemannian Manifolds
  14. Chapter VIII. Curvature
  15. References
  16. Index