
Computational Quantum Chemistry
An Interactive Introduction to Basis Set Theory
- 237 pages
- English
- PDF
- Available on iOS & Android
About this book
Computational Quantum Chemistry removes much of the mystery of modern computer programs for molecular orbital calculations by showing how to develop Excel spreadsheets to perform model calculations and investigate the properties of basis sets. Using the book together with the CD-ROM provides a unique interactive learning tool. In addition, because of the integration of theory with working examples on the CD-ROM, the reader can apply advanced features available in the spreadsheet to other applications in chemistry, physics, and a variety of disciplines that require the solution of differential equations.This book and CD-ROM makes a valuable companion for instructors, course designers, and students. It is suitable for direct applications in practical courses in theoretical chemistry and atomic physics, as well as for teaching advanced features of Excel in IT courses.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Front Cover
- Computational Quantum Chemistry
- Copyright Page
- Contents
- Preface
- Chapter 1. Essential atomic orbital theory
- Chapter 2. Numerical integration
- Chapter 3. Orthonormality
- Chapter 4. The hydrogen atom — numerical solutions
- Chapter 5. The helium atom and the self-consistent field
- Chapter 6. One- and two-electron diatoms
- References
- Index