Many – Body Phenomena At Surfaces
eBook - PDF

Many – Body Phenomena At Surfaces

  1. 592 pages
  2. English
  3. PDF
  4. Available on iOS & Android
eBook - PDF

Many – Body Phenomena At Surfaces

About this book

Many-Body Phenomena at Surfaces contains the proceedings of a two-week 1983 Workshop on Many-Body Phenomena at Surfaces sponsored by the Institute for Theoretical Physics, University of California, Santa Barbara. This workshop covers the many-body phenomena and the many-particle aspects of structural phenomena. This text is organized into six parts encompassing 29 chapters, and begins with a description of the method generally used to calculate ground state properties, densities, equilibrium positions, adiabatic potential curves, and energies of surfaces with and without an adsorbate atom or molecule. It goes on to apply these methods to binding and the calculation of potential surfaces, followed by a more diffuse section on various spectroscopies. Topics here include the experiments that elucidate the dynamic phenomena and the theoretical description, which is of relevance to dynamics. The next section discusses the dynamic phenomena of the inelastic mechanisms important when atomic and molecular species impinge on a surface. The remaining sections describe some elementary reactions, catalysis, and magneto-catalytic phenomena. This book is directed toward all surface scientists, specifically physicists, chemists, theorists, and experimentalists.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Many – Body Phenomena At Surfaces by David Lengreth in PDF and/or ePUB format, as well as other popular books in Physical Sciences & Energy. We have over one million books available in our catalogue for you to explore.

Information

Year
2012
Print ISBN
9780124365605

Table of contents

  1. Front Cover
  2. Many-Body Phenomena at Surfaces
  3. Copyright Page
  4. Table of Contents
  5. Contributors
  6. Preface
  7. PART I: Density Functional Theory
  8. PART II: General Features of Binding
  9. PART III: Electrons, Photons, and Phonons: Mostly Spectroscopy
  10. PART IV: Inelastic Particle–Surface Interactions
  11. PART V: Elementary Reactions
  12. PART VI: Catalysis and Magnetocatalytic Phenomena