Learn Quantum Computing with Python and IBM Quantum Experience
eBook - ePub

Learn Quantum Computing with Python and IBM Quantum Experience

A hands-on introduction to quantum computing and writing your own quantum programs with Python

Robert Loredo

Share book
  1. 510 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Learn Quantum Computing with Python and IBM Quantum Experience

A hands-on introduction to quantum computing and writing your own quantum programs with Python

Robert Loredo

Book details
Book preview
Table of contents
Citations

About This Book

A step-by-step guide to learning the implementation and associated methodologies in quantum computing with the help of the IBM Quantum Experience, Qiskit, and Python that will have you up and running and productive in no time

Key Features

  • Determine the difference between classical computers and quantum computers
  • Understand the quantum computational principles such as superposition and entanglement and how they are leveraged on IBM Quantum Experience systems
  • Run your own quantum experiments and applications by integrating with Qiskit

Book Description

IBM Quantum Experience is a platform that enables developers to learn the basics of quantum computing by allowing them to run experiments on a quantum computing simulator and a real quantum computer. This book will explain the basic principles of quantum mechanics, the principles involved in quantum computing, and the implementation of quantum algorithms and experiments on IBM's quantum processors.

You will start working with simple programs that illustrate quantum computing principles and slowly work your way up to more complex programs and algorithms that leverage quantum computing. As you build on your knowledge, you'll understand the functionality of IBM Quantum Experience and the various resources it offers. Furthermore, you'll not only learn the differences between the various quantum computers but also the various simulators available. Later, you'll explore the basics of quantum computing, quantum volume, and a few basic algorithms, all while optimally using the resources available on IBM Quantum Experience.

By the end of this book, you'll learn how to build quantum programs on your own and have gained practical quantum computing skills that you can apply to your business.

What you will learn

  • Explore quantum computational principles such as superposition and quantum entanglement
  • Become familiar with the contents and layout of the IBM Quantum Experience
  • Understand quantum gates and how they operate on qubits
  • Discover the quantum information science kit and its elements such as Terra and Aer
  • Get to grips with quantum algorithms such as Bell State, Deutsch-Jozsa, Grover's algorithm, and Shor's algorithm
  • How to create and visualize a quantum circuit

Who this book is for

This book is for Python developers who are looking to learn quantum computing and put their knowledge to use in practical situations with the help of IBM Quantum Experience. Some background in computer science and high-school-level physics and math is required.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Learn Quantum Computing with Python and IBM Quantum Experience an online PDF/ePUB?
Yes, you can access Learn Quantum Computing with Python and IBM Quantum Experience by Robert Loredo in PDF and/or ePUB format, as well as other popular books in Informatik & Systemarchitektur. We have over one million books available in our catalogue for you to explore.

Information

Year
2020
ISBN
9781838986759
Edition
1

Section 1: Tour of the IBM Quantum Experience (QX)

In this section, we will tour all the features and resources available to you on the IBM Quantum Experience. These will include some educational materials for all levels, information on the many simulators and real devices available to you, and tools that you can use to perform experiments from the many tutorials as you learn, or to simply create experiments on your own.
This section comprises the following chapters:
  • Chapter 1, Exploring the IBM Quantum Experience
  • Chapter 2, Circuit Composer – Creating a Quantum Circuit
  • Chapter 3, Creating Quantum Circuits Using Quantum Lab Notebooks

Chapter 1: Exploring the IBM Quantum Experience

Quantum computing has been growing in popularity over the past few years, most recently since IBM released the IBM Quantum Experience (IQX) back in May 2016. This release was the first of its kind, hosted on the cloud and providing the world with the opportunity to experiment with a quantum computer for free. The IQX includes a user interface that allows anyone to run experiments on both a simulator and on a real quantum computer.
The goal of this chapter is to first introduce you to the IBM Quantum Experience site, specifically the dashboard, which contains everything you need in order to run experiments. It also allows you to experiment with existing experiments contributed by other developers from around the world, the benefits of which can help you to understand how others are experimenting, and you can perhaps collaborate with them if the experiments correlate with your own ideas.
This chapter will help you understand what actions and information are available in each view. This includes creating an experiment, running experiments on a simulator or real quantum device, information about your profile, available backends, or pending results to experiments. So, let's get started!
The following topics will be covered in this chapter:
  • Navigating the IBM Quantum Experience
  • Getting started with IBM Quantum Experience

Technical requirements

Throughout this book, it is expected that you will have some experience in developing with Python and, although it isn't necessary, some basic knowledge of classical and quantum mechanics would help.
Most of the information will be provided with each chapter, so if you do not have knowledge of classical or quantum mechanics, we will cover what you need to know here.
For those of you that do have knowledge, the information here will serve as a refresher. The Python editor used throughout this book is Jupyter Notebook. You can, of course, use any Python editor of your choice. This may include Watson Studio, PyCharm, Spyder, Visual Studio Code, and so on. Here is the link for the CiA videos: https://bit.ly/35o5M80
Here is the source code used throughout this book: https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience.

Navigating the IBM Quantum Experience

As mentioned earlier, the dashboard is your high-level view of what you will normally see once you log in to IQX. It aggregates multiple views that you can see, and this helps you to get an idea as to what machines you have access to and what experiments you have pending, running, or completed.
In this section, we will go through the steps to get registered on IQX. Let's do that in the next section.

Registering to the IBM Quantum Experience

In this section, we will get registered and explain what happens in the background once you sign up to IQX for the first time. This will help you understand what features and configurations are prepared and available to you upon registration.
To register to the IBM Quantum Experience, follow these steps:
  1. The first step is to head over to the IBM Quantum Experience site at the following link: https://quantum-computing.ibm.com/
  2. Sign-in to your account from the login screen, as shown in Figure 1.1. Your individual situation will determine how to proceed from there.
    If you already have an account or are already signed in, you can skip this section and move on to the next one.
    If you have not registered, then you can select the login method of your choice from the sign-in screen. As you can see, you can register using various methods, such as with your IBM ID, Google, GitHub, Twitter, LinkedIn, or by email.
    If you do not have any of the account types listed, then you can simply register for an IBMid account and use that to sign in:
    Figure 1.1 – The IBM Quantum Experience sign-in page
    Figure 1.1 – The IBM Quantum Experience sign-in page
  3. Once you select the login method of your choice, you will see the login screen for that method. Simply fill out the information, if it's not already there, and select login.
  4. Once signed in, you will land on the Home page. This is the first page you will see each time you log in to the IBM Quantum Experience site:
Figure 1.2 – The IBM Quantum Experience home page
Figure 1.2 – The IBM Quantum Experience home page
Now that you have registered to the IBM Quantum Experience, let's take a quick tour and delve into some features that make up the IQX home page. Let's start by reviewing the home page, specifically the Personal profile tab. You can access your personal profile via your avatar, located at the top right of the page (as pointed out in Figure 1.2).

Understanding the Personal profile tab

This section explains the profile of the logged-in user. This is helpful if you have multiple accounts and you wish to keep track of them. The provider limits the number of jobs that can be executed or queued on a given device at any one time to a maximum, as specified in the documentation. There are many ways to access all the various quantum devices; those listed in the open group will see all freely available quantum devices, as illustrated along the right side of Figure 1.2. For those who are members of the IBM Q Network, you will have access to the open devices, as well as premium quantum devices such as the 65 qubit quantum computer.
Now that you have completed the sign-up process and successfully logged in, we can start off by taking a tour of the IBM Quantum Experience application. This will be where most of the work within this book will take place, so it will benefit you in understanding where everything is so that you can easily make your way around it while developing your quantum programs.

Getting started with IBM Quantum Experience

This section provides a quick way to launch either Circuit Composer or the notebooks located in the Quantum Lab views, herein simply referred to as Qiskit notebooks, each of which we will cover in detail in Chapter 2, Circuit Composer – Creating a Quantum Circuit, and Chapter 3, Creating Quantum Circuits Using Qiskit Notebooks, respectively, so hang in there. But as with other views, know that you can kick-start either from the main dashboard view or from the left panel. Each button easily provides a quick launch for either of the two circuit generators.

Learning about your backends

This section lists the available backend quantum systems that are provisioned for your use (as shown in Figure 1.3). It not only provides a list of the available backends but also provides details for each, such as the status of each backend. The status includes whether the device is online or in maintenance mode, how many qubits (quantum bits) each device contains, and how man...

Table of contents