Rethinking University Teaching
eBook - ePub

Rethinking University Teaching

A Conversational Framework for the Effective Use of Learning Technologies

Diana Laurillard

Share book
  1. 284 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Rethinking University Teaching

A Conversational Framework for the Effective Use of Learning Technologies

Diana Laurillard

Book details
Book preview
Table of contents
Citations

About This Book

Teachers in higher education have had to become more professional in their approach to teaching, matching their professionalism in research. The first edition of this book prepares teachers to do and undergo quality audits and appraisals, and to achieve their personal aims of improving their teaching and their students' learning. The strength of this book is that it provides a sound theoretical basis for designing and using learning technologies in university teaching.
This new edition builds upon the success of the first and contains major updates to the information on learning technologies and includes the implications of using technology for the university context - both campus and electronic - which suggests a new approach to managing learning at institutional level.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Rethinking University Teaching an online PDF/ePUB?
Yes, you can access Rethinking University Teaching by Diana Laurillard in PDF and/or ePUB format, as well as other popular books in Education & Education General. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Routledge
Year
2013
ISBN
9781136409127
Edition
2

Part I What students need from learning technologies

DOI: 10.4324/9781315012940-2

Chapter 1 Teaching as mediating learning

DOI: 10.4324/9781315012940-3

INTRODUCTION

What we believe to be of practical help to lecturers depends upon how we define the aim of teaching, so the greater part of this chapter is concerned with clarifying this basic issue. If you were to believe that teaching is about imparting knowledge, then the main requirement of the lecturer would be the possession of that knowledge. For some time, this has been the prevailing view of university teaching, and therefore academics are appointed on the basis of their qualifications in subject matter knowledge. There is probably also an implicit requirement that they should be capable of imparting the knowledge as well as knowing it. However, since this is done through lectures, and they can all talk, the requirement has not been dignified with any sort of qualification.
Of course, ‘imparting knowledge’ has not usually been a very successful teaching aim, as every essay and examination paper testifies. Academics have always been well aware of this, but while higher education was an Ă©litist enterprise, it was possible to make this failure the responsibility of the student, reified in the Tail' grade. This is not now the prevailing view. As higher education has become less Ă©litist, and has taken on the task of educating anyone who wishes to pursue their studies, many institutions of higher education have developed an approach to teaching that has a higher ambition: ‘The aim of teaching is simple: it is to make student learning possible’ (Ramsden, 1992: 5). Changes in approach are important. However, it is changes in practice will make the real difference to students, and we are still a long way from defining and requiring professional practice for university teachers.
What might that be? If it is not simply imparting knowledge, what is it? ‘Making student learning possible’ places much more responsibility with the teacher. It implies that the teacher must know something about student learning, and what makes it possible. This is what I have characterised in the chapter title as ‘mediating learning’. Since this is the idea that motivates the approach taken in the remainder of the book, I should begin by explaining it. An analysis of the nature of academic learning of the kind done by students at university level should reveal what it might mean to ‘make student learning possible’.

THE CHARACTER OF ACADEMIC LEARNING

There is no professional training requirement for university academics in terms of their teaching competence, as there is for school teaching. Possibly for this reason, there is comparatively little research on student learning at university level. Of the many books and journals concerned with teaching, the great majority relate to school level. The Dearing Report on higher education in the UK acknowledged this:
While higher education has increased its class sizes, reduced its teaching time, modularised, accepted students without traditional academic preparation, refocused programmes to prepare students for employment, and so on, it has done so on the basis of little evidence of the consequences, and with little strategic research in place to monitor them.
(Dearing, Main Report, 1997: 126)
Advice to university teachers has to draw on other fields to supplement the meagre information we have from direct research. This book is directed specifically at university teaching, so it is worth deciding what kind of transformation has to be wrought on the available data to make it applicable to this context. Is learning at university different from learning at school, or learning outside formal education?
Academics have ambitious definitions for student learning. When asked to define the nature of learning in their subject area they produce descriptions of high-level thinking, such as ‘critically assessing the arguments’, ‘compiling patterns to integrate their knowledge’, ‘becoming aware of the limitations of theoretical knowledge in the transfer of theory to practice’, ‘coming to accept relativism as a positive position’. Course descriptions and syllabuses inevitably tend to focus on the subject content that students will be learning, but clearly, in reflecting on what it is really about, academics are fascinated by the process itself. They see learning not simply as a product, but as a series of activities, and developing skills and capabilities as much as formal knowledge. How students approach their subject is as important as what they end up knowing. If we were to eavesdrop on academics' discussions in an examiners' meeting, the point would be confirmed. Missing out some key points will be forgiven if the argument is good; high praise is offered not just for accuracy, but more often for evidence of integrating lectures with background reading; accuracy is the sine qua non, perhaps, but more is needed. Evidently, student learning is not just about acquiring high-level knowledge. The way students handle that knowledge is what really concerns academics.
If academic learning is not just about imparting knowledge, is it really different from the acquisition of everyday knowledge? We learn a great deal about the world very successfully without academic institutions, and with no help from any didactic process. There is a tradition of pedagogy that stretches back to John Dewey's rejection of the classical mode of passing on knowledge in the form of unchangeable ideas. This strand of educational theory has always argued for the learner to be actively engaged in the formation of their ideas. More recent exponents of the latter tradition are Vygotsky, Piaget, Bruner, Papert, all of whom argue for the active engagement of the learner rather than the passive reception of given knowledge. These psychologists have had an effect in schools, especially at primary level. However, in universities, with their continued reliance on lectures and textbooks, the classical tradition of ‘imparting knowledge’ still flourishes in the forms through which we teach, if not in the rhetoric of individual academics.
The idea of academic knowledge as an abstract Platonic form had a new impetus from the development of an information-processing model of cognition. It used the metaphor of knowledge structures, or conceptual structures, to describe mentalistic entities that can be changed through instruction, or even represented in a computer program. Computational models of cognition now form the mainstream of cognitive psychology, and where psychology leads, educational theorists like to follow. There is an undeniable attraction in the rigour that computational modelling can bring to the description of learning. Lecturers are also likely to be attracted by the idea of a conceptual structure as a stable and well-defined entity abstracted from the contexts in which the concept was experienced. The notion sits well with the ideal of ‘discipline’ knowledge. However, it does not address the reality that all teachers surely recognise — that students do not transfer their knowledge across different settings, that they often find it difficult to relate theory to practice, that knowledge does seem to be context-dependent. University teachers are not aided by the representation of knowledge as a formal structure if they prefer to see learning as an activity that develops capabilities, and knowledge as an aspect of that activity. They need a description of academic knowledge that is more realistic than a stable mental model.
The next section presents a recent critique of educational tradition and its emphasis on decontextualising knowledge. This is followed by a critique of the critique, and the chapter ends with a synthesis of what I take to be the essential character of academic learning that provides the basis for discussion in the rest of the book.

A CRITIQUE OF ACADEMIC LEARNING AS IMPARTED KNOWLEDGE

The recent interest in the idea of ‘situated learning’ expresses dissatisfaction with the idea of formal knowledge, and with the computational models of mainstream cognitive psychology. The origins of this approach lie in ethnographic studies and in Vygotsky's theory of the social character of learning (Vygotsky, 1962). The idea is to recognise that learning must be ‘situated’, in the sense that the learner is located in a situation. Therefore, what they know from that experience they know in relation to that particular context:
Situations might be said to co-produce knowledge through activity. Learning and cognition, it is now argued, are fundamentally situated.
(Brown et al., 1989 a: 32)
The article outlining the approach was published in Educational Researcher, and provided a well-articulated statement of the position, based on several research studies of learning. The article attracted a great deal of comment, and had the benefit of further discussion through critiques from others and a reply by the authors, so it makes a good focus for our analysis of the nature of academic learning. The detail of the argument, rather than a general summary, is the best way to see how the perspective defines learning, and what it means for the practising teacher. Going through the detail makes it easier for the lecturer to relate the broad generalities to their own subject.
The argument begins with a demonstration that knowledge has a contextualised character, which means that we cannot separate knowledge to be learned from the situations in which it is used. The idea of ‘situated knowledge’ invites the analogy of knowledge as tool:
We should abandon once and for all any notion that a concept is some sort of abstract, self-contained substance. Instead, it may be more useful to consider conceptual knowledge as in some ways similar to a set of tools.
(Ibid. 5)
A corollary of this argument is that the acquisition of inert concepts (e.g. algorithms, routines, decontextualised definitions — that is the stuff of many university courses) is no use if the student cannot apply them. The analogy they use for students having inert concepts is those people who have a Swiss Army knife with a device for getting stones out of horses hooves: they can talk knowledgeably about it, but would not know what to do if they saw a limping horse. We have to be careful with analogies. Many engineering students have no idea how to do a Laplace transform within a week or so of passing finals, but knowing of its existence and its function they can reassemble the heuristic knowledge they need when necessary. If they know about the device, and can recognise a ‘limping horse’, it is easy to look up the heuristics of ‘removing stones’ they once knew. However, academic knowledge is not just the heuristics of ‘removing stones’, or ‘doing Laplace transforms’; it has a broader and deeper functionality than that. The far greater problem is that students can exhibit competence in doing Laplace transforms without having any idea of when to use them or why. They are good at removing stones, but too often, they cannot recognise a limping horse. The distinction is important. As Brown et al. (1989 a) argue, we have to use our knowledge in authentic activity, i.e. genuine application of the knowledge, which allows us to build an increasingly rich understanding of the tool itself and how it operates. The reason for unpacking the analogy is that many lecturers would argue that they do indeed give students the opportunity to do ‘authentic activity’: to understand Laplace transforms you have to do lots of examples of them and use them in different problems. This is common practice in every engineering course and has its parallel in every other kind of course. The problem arises from the scope of ‘authentic’, the degree of embeddedness in the social and physical world. We have to help students not just to perform the procedure, but also to stand back from it and see why it is necessary, where it fits and does not fit, distinguish situations where it is needed from those where it is not, i.e. carry out the authentic activities of the subject expert. Bu...

Table of contents