Engineering Solutions for CO2 Conversion
eBook - ePub

Engineering Solutions for CO2 Conversion

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Engineering Solutions for CO2 Conversion

About this book

A comprehensive guide that offers a review of the current technologies that tackle CO2 emissions

The race to reduce CO2 emissions continues to be an urgent global challenge. Engineering Solutions for CO2 Conversion offers a thorough guide to the most current technologies designed to mitigate CO2 emissions ranging from CO2 capture to CO2 utilization approaches. With contributions from an international panel representing a wide range of expertise, this book contains a multidisciplinary toolkit that covers the myriad aspects of CO2 conversion strategies. Comprehensive in scope, it explores the chemical, physical, engineering and economical facets of CO2 conversion.

Engineering Solutions for CO2 Conversion explores a broad range of topics including linking CFD and process simulations, membranes technologies for efficient CO2 capture-conversion, biogas sweetening technologies, plasma-assisted conversion of CO2, and much more.

This important resource:

  • Addresses a pressing concern of global environmental damage, caused by the greenhouse gases emissions from fossil fuels
  • Contains a review of the most current developments on the various aspects of CO2 capture and utilization strategies
  • Incldues information on chemical, physical, engineering and economical facets of CO2 capture and utilization
  • Offers in-depth insight into materials design, processing characterization, and computer modeling with respect to CO2 capture and conversion

Written for catalytic chemists, electrochemists, process engineers, chemical engineers, chemists in industry, photochemists, environmental chemists, theoretical chemists, environmental officers, Engineering Solutions for CO2 Conversion provides the most current and expert information on the many aspects and challenges of CO2 conversion.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Engineering Solutions for CO2 Conversion by Tomas Ramirez Reina,Jose A. Odriozola,Harvey Arellano-Garcia in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Engineering General. We have over one million books available in our catalogue for you to explore.

1
CO2 Capture – A Brief Review of Technologies and Its Integration

Mónica García1, Theo Chronopoulos2, and Rubén M. Montañés3
1International Energy Agency‐ Greenhouse Gas R&D Programme (IEAGHG), Pure Offices, Hatherley Lane, Cheltenham, GL51 6SH, United Kingdom
2128/15 Hoxton Street, N1 6SH, London, United Kingdom
3Energy Technology, Chalmers University of Technology, Department of Space, Earth and Environment, HƶrsalsvƤgen 7B, SE‐412 96, Gothenburg, Sweden

1.1 Introduction: The Role of Carbon Capture

The Intergovernmental Panel for Climate Change (IPCC) recently released the special report on 1.5C [1] and pointed out the need to implement all available tools to cut down CO2 emissions. Energy efficiency, fuel switching, renewables, and carbon capture represent the largest impact on CO2 emission reduction in power and industrial sectors. Carbon capture represents a contribution of 23% in the ā€œBeyond 2 degrees scenarioā€ (B2DS) modeled by the International Energy Agency (IEA)1 and has other interesting characteristics that increase its value beyond its cost: (i) easiness to retrofit current power plants or industrial facilities,2 (ii) simplicity to integrate that in the electricity grid and offer an interesting tool to cover the intermittency of renewables, (iii) ideal to cut down industrial process emissions that otherwise cannot suffer deep reductions, and (iv) current carbon budgets rely on negative emissions to compensate the use of fossil fuels [1]. Carbon capture combined with bioenergy (BECCS) can provide negative emissions at large scale in an immediate future.
CO2 capture (also called CO2 sequestration or carbon capture) involves a group of technologies aiming to separate CO2 from other compounds released during the production of energy or industrial products, obtaining a CO2‐rich gas that can be stored or used for the obtention of valuable products. The main classification of CO2 capture technologies relies on where in the process the CO2 separation occurs. For the power sector, it can be divided into pre‐, oxy‐, and post‐combustion. For the industrial sector, the classification is similar, although their integration would be different. In addition, other new arrangements are emerging.

1.2 CO2 Capture Technologies

1.2.1 Status of CO2 Capture Deployment

GCCSI reported in 2018 23 large‐scale CCS facilities in operation or under construction globally, summing up 37 MtCO2 per year. This wide range of facilities shows the versatility of CO2 capture processes.3
In the power sector, the United States is leading the implementation deployment, although Europe has the highest CO2 capture capacity. The Boundary Dam project (Canada) and Petra Nova (USA) are pioneers in reaching commercial scale. Moreover, based on the successful results of the Boundary Dam project, a CO2 capture facility has been planned for the Shand power facility (Canada), incorporating not only learnings from the Boundary Dam but also enhanced thermal integration and tailored design. The results show a significant cost reduction [2]. Also in Canada, the Quest project completes the list of Canadian CCS projects in operation [3] and The National Energy Laboratory (NET) power project recently appeared in the United States as a potential significant reduction on CO2 capture costs [4].
In the industrial sector, cement, steel, refining, chemicals, heavy oil, hydrogen, waste‐to‐energy, fertilizers, and natural gas have been identified by the Carbon Sequestration Leadership Forum (CSLF; https://www.cslforum.org) as the main intensive emitter industries. As it is highlighted, the Norcem Brevik plant [5, 6], LEILAC [7] (cement production), and Al Redayah (steel production) are on the way to start running carbon capture systems in industrial facilities at pilot and large scales.

1.2.2 Pre‐combustion

Pre‐combustion systems can be applied to natural gas combined cycles (NGCC) or integrated gasification combined cycle (IGCC) (Figure 1.1), where a syngas, comprising mainly CO and H2, feeds a gas turbine (GT) combined cycle system to produce electricity. The potential advantages are higher conversion efficiencies of coal to electricity and cheaper removal of pollutants [8]. The syngas, based on the water shift reaction, can be converted into CO2 and H2O. This mixture is typically separated with physical solvents (as described in Section 1.2.4), membranes, or sorbents. However, hybrid technologies can also be used. Depending on the technology, further post‐treatment would be needed to avoid degradation and loss of efficiency.
The main theoretical advantage of pre‐combustion is the production of hydrogen, which will add value to the business model, and a lower energy penalty compared to using the traditional chemical absorption within a post‐combustion configuration. However, large projects demonstrated that this difference is only 1–2%, as reported by National Energy Technology Laboratory (NETL) [9].
The most notable pre‐combustion project was the Kemper County IGCC plant in the United States, which stopped its operation in 2017.This demonstration fac...

Table of contents

  1. Cover
  2. Table of Contents
  3. Engineering Solutions for CO2 Conversion
  4. Copyright
  5. 1 CO2 Capture – A Brief Review of Technologies and Its Integration
  6. 2 Advancing CCSU Technologies with Computational Fluid Dynamics (CFD): A Look at the Future by Linking CFD and Process Simulations
  7. 3 Membranes Technologies for Efficient CO2 Capture–Conversion
  8. 4 Computational Modeling of Carbon Dioxide Catalytic Conversion
  9. 5 An Overview of the Transition to a Carbon‐Neutral Steel Industry
  10. 6 Potential Processes for Simultaneous Biogas Upgrading and Carbon Dioxide Utilization
  11. 7 Biogas Sweetening Technologies
  12. 8 CO2 Conversion to Value‐Added Gas‐Phase Products: Technology Overview and Catalysts Selection
  13. 9 CO2 Utilization Enabled by Microchannel Reactors
  14. 10 Analysis of High‐Pressure Conditions in CO2 Hydrogenation Processes
  15. 11 Sabatier‐Based Direct Synthesis of Methane and Methanol Using CO2 from Industrial Gas Mixtures
  16. 12 Survey of Heterogeneous Catalysts for the CO2 Reduction to CO via Reverse Water Gas Shift
  17. 13 Electrocatalytic Conversion of CO2 to Syngas
  18. 14 Recent Progress on Catalyst Development for CO2 Conversion into Value‐Added Chemicals by Photo‐ and Electroreduction
  19. 15 Yolk@Shell Materials for CO2 Conversion: Chemical and Photochemical Applications
  20. 16 Aliphatic Polycarbonates Derived from Epoxides and CO2
  21. 17 Metal–Organic Frameworks (MOFs) for CO2 Cycloaddition Reactions
  22. 18 Plasma‐Assisted Conversion of CO2
  23. Index
  24. End User License Agreement