Geomechanical Behaviors of Bimrocks
eBook - ePub

Geomechanical Behaviors of Bimrocks

  1. 406 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Geomechanical Behaviors of Bimrocks

About this book

This book is intended as a reference book for advanced graduate students and research engineers in block-in-matrix rocks (bimrocks) or soil and rock mixtures (SRMs) or rock and soil aggregate (RSA). Bimrocks are complex formations characterized by competent rock inclusions floating in a weaker matrix. Typical types of bimrocks include a series of mixed geological or engineering masses such as mélanges, fault rocks, coarse pyroclastic rocks, breccias, sheared serpentines, and waste dump mixture. Bimrock is especially different from the general soil and rock material, and the detection of the damage and fracture is still wide open to innovative research. Globally, there is a widespread interest in investigating the geomechanical behaviors of bimrocks, such as deformation and strength characteristics, damage and fracture evolution, and stability prediction of bimrock construction. However, the meso-structural factors control the whole mechanical properties of bimrocks; the source of the macroscopic deformation phenomenon is the meso-structural changes. Therefore, evaluation of the mesoscopic physical and mechanical properties, together with advanced testing technique, is an attractive research topic in rock mechanics. As a result, comprehensive macroscopic and mesoscopic experimental investigations should be conducted to reveal the damage and fracturing mechanical behaviors of bimrocks.

The readers of this work can gain new insights into the meso-structural changes of bimrocks subjected to different stress paths. This book is expected to improve the understanding of the mesoscopic damage and fracturing mechanisms of bimrocks, and can be helpful to predict the stability of rock structures where rock mass is subjected to complex loading conditions.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Geomechanical Behaviors of Bimrocks by Wang Yu in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Civil Engineering. We have over one million books available in our catalogue for you to explore.

Chapter 1

Macro–meso geomechanical behaviors of bimrocks

1.1 Mechanical behaviors revealed by variable-angle shear experiments

1.1.1 Introduction

Bimsoils (block-in-matrix soils) are defined as structurally complex mixtures composed of stiff blocks of various lithologies and sizes, embedded in a fine-grained soil matrix (Lindquist, 1994; Kalender et al., 2014; Wang et al., 2017, 2018; Mahdevari and Maarefvand, 2017). Due to their complex origin and formation, typical bimsoils consist of opencast dumps, cemented waste backfills, weathered rocks, coarse pyroclastic rocks, mélanges breccias, colluvium and glacial tills, etc. Bimsoils are composed of randomly distributed rock blocks separated from the soil matrix by their contacts that are even weaker than the matrix. This kind of geomaterial is distributed all over the world and often represents a challenge in engineering practice. The ever-increasing importance of bimsoil in the geotechnical engineering construction has drawn more and more attention of many engineers in recent years. In the literature, this kind of special inhomogeneous geomaterial is also commonly referred to as block-in-matrix rocks (bimrocks) (Lindquist and Goodman, 1994; Coli et al., 2011, 2012; Afifipour and Moarefvand, 2014; Kahraman et al., 2015) or SRM (soil and rock mixture) (Xu et al., 2011; Zhang et al., 2015, 2016; Wang et al., 2016) or RSA (Rok and soil aggregate) (Li et al., 2004; Wang et al., 2014). Bimsoils are chaotic units, and there is a sufficient mechanical contrast between the weak soil matrix and stiff rock blocks. The shear characteristics, in fact, are strongly influenced by the geomechanical properties of the soil matrix and rock block percentage (RBP), as well as distribution, orientation, and block size.
Due to the importance of the shear strength of bimsoils in the construction and building structures, many scholars have conducted large-scale in situ direct shear tests (Chu et al., 1996; Coli et al., 2011; Xu et al., 2015), large-scale triaxial experiments (Chu et al., 2010), small-scale laboratory tests (Lindquist and Goodman, 1994; Wang et al., 2015, 2016), and numerical simulation methods on artificial or natural bimsoils. The large-scale in situ test, without disturbance of bimsoil samples, is a better way to determine the shear strength of bimsoils, but the cost is relatively high. Alejano and Carranza-Torres (2011) used penetrometer and vane tests to empirically estimate the shear strength of a bimsoil with the rock blocks of decomposed granite. Coli et al. (2011) conducted in situ shear tests on rocks composed of clayey matrix and rock fragments, which is named bimrock (Medley, 1994). The bimrock is characterized by a high friction angle and low cohesion. Chang and Cheng (2014) proposed a method to estimate the shear strength of gravel deposits by determining their topographic characteristics, which are the envelopes of slope inclinations and slope heights, and their study established an economic way to estimate the shear strength of bimsoils in Central Taiwan. Zhang et al. (2015) conducted in situ direct shear tests to bimsoils composed of embankment dam; the shear strength parameters were determined using the tests. By performing in situ shear experiments on large-scale bimsoil samples, Li et al. (2004) and Xu et al. (2011) obtained similar results: there is a decrease in cohesion and an increase in the friction angle with increasing RBP. Because of the high cost of in situ shear test, small-scale and large-scale triaxial experiments have always been an alternative method to determine the shear strength parameters. Donaghe and Torrey (1985) determined the shear strength of bimsoils using triaxial tests on large-scale samples and found that the effective friction angle increased with increasing gravel contents. Lindquist and co-workers performed laboratory triaxial deformation test on artificial bimsoil samples and found that the friction angle increases with increasing block content (Lindquist, 1994; Lindquist and Goodman, 1994; Medley and Lindquist, 1995). They also found that the block orientation has an obvious effect on the cohesion value. Other researchers also concluded that the shear strength of clay–rock mixtures gradually increases with increasing percentages of floating particles in unsaturated clays (Iannacchione, 1997; Vallejo and Mawby, 2000; Vallejo, 2001; Kokusho et al., 2004). Dupla et al. (2007) also indicated that the volumetric proportion of gravels is the main factor that influences the elastic and failure behaviors of bimsoils. Wang et al. (2016) performed a real-time ultrasonic test to investigate the ultrasonic and mechanical properties of bimsoil samples and found that the RBP influences not only the failure morphology but also the strength parameters. The results of physical modeling test and numerical simulation meth...

Table of contents

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright Page
  5. Table of Contents
  6. About the author
  7. Notations
  8. Preface
  9. 1 Macro–meso geomechanical behaviors of bimrocks
  10. 2 Ultrasonic and mechanical characteristics of bimrocks
  11. 3 Static fracture evolution of bimrock revealed by in situ CT technique
  12. 4 Dynamic behavior characterization of bimrocks using the CT technique
  13. 5 Flow and stress coupled characteristics of bimrock
  14. 6 Investigation on piping disaster in bimsoils
  15. Index