Quantum Mechanical Foundations of Molecular Spectroscopy
eBook - ePub

Quantum Mechanical Foundations of Molecular Spectroscopy

Max Diem

Share book
  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Quantum Mechanical Foundations of Molecular Spectroscopy

Max Diem

Book details
Book preview
Table of contents
Citations

About This Book

A concise textbook bridging quantum theory and spectroscopy!

Designed as a practical text, Quantum Mechanical Foundations of Molecular Spectroscopy covers the quantum mechanical fundamentals of molecular spectroscopy from the view of a professional spectroscopist, rather than a theoretician. Written by a noted expert on the topic, the book puts the emphasis on the relationship between spectroscopy and quantum mechanics, and provides the background information and derivations of the subjects needed to understand spectroscopy including: stationary energy states, transitions between these states, selection rules, and symmetry.

The phenomenal growth of all forms of spectroscopy over the past eight decades has contributed enormously to our understanding of molecular structure and properties. Today spectroscopy covers a broad field including the modern magnetic resonance techniques, non-linear, laser and fiber-based spectroscopy, surface and surface-enhanced spectroscopy, pico- and femtosecond time resolved spectroscopy, and many more. This up-to-date resource discusses several forms of spectroscopy that are used in many fields of science, such as fluorescence, surface spectroscopies, linear and non-linear Raman spectroscopy and spin spectroscopy. This important text:

  • Contains the physics and mathematics needed to understand spectroscopy
  • Explores spectroscopic methods the are widely used in chemistry, biophysics, biology, and materials science
  • Offers a text written by an experienced lecturer and practitioner of spectroscopic methods
  • Includes detailed explanations and worked examples

Written for chemistry, biochemistry, material sciences, and physics students, Quantum Mechanical Foundations of Molecular Spectroscopy provides an accessible text for understanding molecular spectroscopy.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Quantum Mechanical Foundations of Molecular Spectroscopy an online PDF/ePUB?
Yes, you can access Quantum Mechanical Foundations of Molecular Spectroscopy by Max Diem in PDF and/or ePUB format, as well as other popular books in Sciences physiques & Spectroscopie et analyse du spectre. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Wiley-VCH
Year
2021
ISBN
9783527829606

1
Transition from Classical Physics to Quantum Mechanics

At the end of the nineteenth century, classical physics had progressed to such a level that many scientists thought all problems in physical science had been solved or were about to be solved. After all, classical Newtonian mechanics was able to predict the motions of celestial bodies, electromagnetism was described by Maxwell's equations (for a review of Maxwell's equations, see [1]), the formulation of the principles of thermodynamics had led to the understanding of the interconversion of heat and work and the limitations of this interconversion, and classical optics allowed the design and construction of scientific instruments such as the telescope and the microscope, both of which had advanced the understanding of the physical world around us.
In chemistry, an experimentally derived classification of elements had been achieved (the rudimentary periodic table), although the nature of atoms and molecules and the concept of the electron's involvement in chemical reactions had not been realized. The experiments by Rutherford demonstrated that the atom consisted of very small, positively charged, and heavy nuclei that identify each element and electrons orbiting the nuclei that provided the negative charge to produce electrically neutral atoms. At this point, the question naturally arose: Why don't the electrons fall into the nucleus, given the fact that opposite electric charges do attract? A planetary‐like situation where the electrons are held in orbits by centrifugal forces was not plausible because of the (radiative) energy loss an orbiting electron would experience. This dilemma was one of the causes for the development of quantum mechanics.
In addition, there were other experimental results that could not be explained by classical physics and needed the development of new theoretical concepts, for example, the inability of classical models to reproduce the blackbody emission curve, the photoelectric effect, and the observation of spectral “lines” in the emission (or absorption) spectra of atomic hydrogen. These experimental results dated back to the first decade of the twentieth century and caused a nearly explosive reaction by theoretical physicists in the 1920s that led to the formulation of quantum mechanics. The names of these physicists – Planck, Heisenberg, Einstein, Bohr, Born, de Broglie, Dirac, Pauli, Schrödinger, and others – have become indelibly linked to new theoretical models that revolutionized physics and chemistry.
This development of quantum theory occupied hundreds of publications and letters and thousands of pages of printed material and cannot be covered here in this book. Therefore, this book presents many of the difficult theoretical derivations as mere facts, without proof or even the underlying thought processes, since the aim of the discussion in the following chapters is the application of the quantum mechanical principles to molecular spectroscopy. Thus, these discussions should be construed as a guide to twenty‐first‐century students toward acceptance of quantum mechanical principles for their work that involves molecular spectroscopy.
Before the three cornerstone experiments that ushered in quantum mechanics – Planck's blackbody emission curve, the photoelectric effect, and the observation of spectral “lines” in the hydrogen atomic spectra – will be discussed, electromagnetic radiation, or light, will ...

Table of contents