
Numerical Issues in Statistical Computing for the Social Scientist
- English
- PDF
- Available on iOS & Android
Numerical Issues in Statistical Computing for the Social Scientist
About this book
At last—a social scientist's guide through the pitfalls of modern statistical computing
Addressing the current deficiency in the literature on statistical methods as they apply to the social and behavioral sciences, Numerical Issues in Statistical Computing for the Social Scientist seeks to provide readers with a unique practical guidebook to the numerical methods underlying computerized statistical calculations specific to these fields. The authors demonstrate that knowledge of these numerical methods and how they are used in statistical packages is essential for making accurate inferences. With the aid of key contributors from both the social and behavioral sciences, the authors have assembled a rich set of interrelated chapters designed to guide empirical social scientists through the potential minefield of modern statistical computing.
Uniquely accessible and abounding in modern-day tools, tricks, and advice, the text successfully bridges the gap between the current level of social science methodology and the more sophisticated technical coverage usually associated with the statistical field.
Highlights include:
- A focus on problems occurring in maximum likelihood estimation
- Integrated examples of statistical computing (using software packages such as the SAS, Gauss, Splus, R, Stata, LIMDEP, SPSS, WinBUGS, and MATLAB ® )
- A guide to choosing accurate statistical packages
- Discussions of a multitude of computationally intensive statistical approaches such as ecological inference, Markov chain Monte Carlo, and spatial regression analysis
- Emphasis on specific numerical problems, statistical procedures, and their applications in the field
- Replications and re-analysis of published social science research, using innovative numerical methods
- Key numerical estimation issues along with the means of avoiding common pitfalls
- A related Web site includes test data for use in demonstrating numerical problems, code for applying the original methods described in the book, and an online bibliography of Web resources for the statistical computation
Designed as an independent research tool, a professional reference, or a classroom supplement, the book presents a well-thought-out treatment of a complex and multifaceted field.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Title Page
- Copyright
- Contents
- Preface
- Chapter 1 Introduction: Consequences of Numerical Inaccuracy
- Chapter 2 Sources of Inaccuracy in Statistical Computation
- Chapter 3 Evaluating Statistical Software
- Chapter 4 Robust Inference
- Chapter 5 Numerical Issues in Markov Chain Monte Carlo Estimation
- Chapter 6 Numerical Issues Involved in Inverting Hessian Matrices
- Chapter 7 Numerical Behavior of King’s EI Method
- Chapter 8 Some Details of Nonlinear Estimation
- Chapter 9 Spatial Regression Models
- Chapter 10 Convergence Problems in Logistic Regression
- Chapter 11 Recommendations for Replication and Accurate Analysis
- Bibliography
- Author Index
- Subject Index
- EULA