Multiple Imputation of Missing Data in Practice
eBook - ePub

Multiple Imputation of Missing Data in Practice

Basic Theory and Analysis Strategies

  1. 506 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Multiple Imputation of Missing Data in Practice

Basic Theory and Analysis Strategies

About this book

Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies provides a comprehensive introduction to the multiple imputation approach to missing data problems that are often encountered in data analysis. Over the past 40 years or so, multiple imputation has gone through rapid development in both theories and applications. It is nowadays the most versatile, popular, and effective missing-data strategy that is used by researchers and practitioners across different fields. There is a strong need to better understand and learn about multiple imputation in the research and practical community.

Accessible to a broad audience, this book explains statistical concepts of missing data problems and the associated terminology. It focuses on how to address missing data problems using multiple imputation. It describes the basic theory behind multiple imputation and many commonly-used models and methods. These ideas are illustrated by examples from a wide variety of missing data problems. Real data from studies with different designs and features (e.g., cross-sectional data, longitudinal data, complex surveys, survival data, studies subject to measurement error, etc.) are used to demonstrate the methods. In order for readers not only to know how to use the methods, but understand why multiple imputation works and how to choose appropriate methods, simulation studies are used to assess the performance of the multiple imputation methods. Example datasets and sample programming code are either included in the book or available at a github site (https://github.com/he-zhang-hsu/multiple_imputation_book).

Key Features

  • Provides an overview of statistical concepts that are useful for better understanding missing data problems and multiple imputation analysis
  • Provides a detailed discussion on multiple imputation models and methods targeted to different types of missing data problems (e.g., univariate and multivariate missing data problems, missing data in survival analysis, longitudinal data, complex surveys, etc.)
  • Explores measurement error problems with multiple imputation
  • Discusses analysis strategies for multiple imputation diagnostics
  • Discusses data production issues when the goal of multiple imputation is to release datasets for public use, as done by organizations that process and manage large-scale surveys with nonresponse problems
  • For some examples, illustrative datasets and sample programming code from popular statistical packages (e.g., SAS, R, WinBUGS) are included in the book. For others, they are available at a github site (https://github.com/he-zhang-hsu/multiple_imputation_book)

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Multiple Imputation of Missing Data in Practice by Yulei He,Guangyu Zhang,Chiu-Hsieh Hsu in PDF and/or ePUB format, as well as other popular books in Mathematics & Probability & Statistics. We have over one million books available in our catalogue for you to explore.

Information

Table of contents

  1. Cover Page
  2. Half-Title Page
  3. Title Page
  4. Copyright Page
  5. Dedication Page
  6. Contents
  7. Foreword
  8. Preface
  9. 1 Introduction
  10. 2 Statistical Background
  11. 3 Multiple Imputation Analysis: Basics
  12. 4 Multiple Imputation for Univariate Missing Data: Parametric Methods
  13. 5 Multiple Imputation for Univariate Missing Data: Robust Methods
  14. 6 Multiple Imputation for Multivariate Missing Data: The Joint Modeling Approach
  15. 7 Multiple Imputation for Multivariate Missing Data: The Fully Conditional Specification Approach
  16. 8 Multiple Imputation in Survival Data Analysis
  17. 9 Multiple Imputation for Longitudinal Data
  18. 10 Multiple Imputation Analysis for Complex Survey Data
  19. 11 Multiple Imputation for Data Subject to Measurement Error
  20. 12 Multiple Imputation Diagnostics
  21. 13 Multiple Imputation Analysis for Nonignorable Missing Data
  22. 14 Some Advanced Topics
  23. Bibliography
  24. Author Index
  25. Subject Index