
Cancer Prediction for Industrial IoT 4.0
A Machine Learning Perspective
- 203 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
Cancer Prediction for Industrial IoT 4.0
A Machine Learning Perspective
About this book
Cancer Prediction for Industrial IoT 4.0: A Machine Learning Perspective explores various cancers using Artificial Intelligence techniques. It presents the rapid advancement in the existing prediction models by applying Machine Learning techniques. Several applications of Machine Learning in different cancer prediction and treatment options are discussed, including specific ideas, tools and practices most applicable to product/service development and innovation opportunities. The wide variety of topics covered offers readers multiple perspectives on various disciplines.
Features
• Covers the fundamentals, history, reality and challenges of cancer
• Presents concepts and analysis of different cancers in humans
• Discusses Machine Learning-based deep learning and data mining concepts in the prediction of cancer
• Offers real-world examples of cancer prediction
• Reviews strategies and tools used in cancer prediction
• Explores the future prospects in cancer prediction and treatment
Readers will learn the fundamental concepts and analysis of cancer prediction and treatment, including how to apply emerging technologies such as Machine Learning into practice to tackle challenges in domains/fields of cancer with real-world scenarios. Hands-on chapters contributed by academicians and other professionals from reputed organizations provide and describe frameworks, applications, best practices and case studies on emerging cancer treatment and predictions.
This book will be a vital resource to graduate students, data scientists, Machine Learning researchers, medical professionals and analytics managers.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Chapter 1 Investigation of IoMT-Based Cancer Detection and Prediction
- 1.1 Introduction
- 1.2 Cancer Diagnosis and Research
- 1.2.1 Computational Analysis for Cancer Research
- 1.2.2 Role of the IoMT in Cancer Detection and Prediction
- 1.2.3 Role of ML/DL Techniques in Cancer Detection and Prediction
- 1.3 Literature Review
- 1.4 Proposed Methodology
- 1.5 Transfer Learning
- 1.5.1 Pre-Trained Models
- 1.5.2 VGG16 and VGG19
- 1.5.3 ResNet-50
- 1.5.4 DenseNet-121
- 1.6 Experiment Setting
- 1.6.1 Source of Dataset
- 1.6.2 Feature Extraction and Classification
- 1.6.3 Pre-Processing and Training
- 1.6.4 Model Evaluation Metrics
- 1.7 Results and Comparative Analysis
- 1.8 Summary
- References
1.1 Introduction
1.2 Cancer Diagnosis and Research
1.2.1 Computational Analysis for Cancer Research
Table of contents
- Cover
- Half Title
- Series Page
- Title Page
- Copyright Page
- Contents
- Preface
- Editors
- Contributors
- Chapter 1: Investigation of IoMT-Based Cancer Detection and Prediction
- Chapter 2: Histopathological Cancer Detection Using CNN
- Chapter 3: Role of Histone Methyltransferase in Breast Cancer
- Chapter 4: Breast Cancer Detection Using Machine Learning and Its Classification
- Chapter 5: Diagnosis and Prediction of Type-2 Chronic Kidney Disease Using Machine Learning Approaches
- Chapter 6: Behavioral Prediction of Cancer Using Machine Learning
- Chapter 7: Prediction of Cervical Cancer Using Machine Learning
- Chapter 8: Applications of Machine Learning in Cancer Prediction and Prognosis
- Chapter 9: Significant Advancements in Cancer Diagnosis Using Machine Learning
- Chapter 10: Human Papillomavirus and Cervical Cancer
- Chapter 11: Case Studies/Success Stories on Machine Learning and Data Mining for Cancer Prediction
- Index