Cognitive Behavior and Human Computer Interaction Based on Machine Learning Algorithms
eBook - ePub

Cognitive Behavior and Human Computer Interaction Based on Machine Learning Algorithms

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Cognitive Behavior and Human Computer Interaction Based on Machine Learning Algorithms

About this book

COGNITIVE BEHAVIOR AND HUMAN COMPUTER INTERACTION BASED ON MACHINE LEARNING ALGORITHMS

The objective of this book is to provide the most relevant information on Human-Computer Interaction to academics, researchers, and students and for those from industry who wish to know more about the real-time application of user interface design.

Human-computer interaction (HCI) is the academic discipline, which most of us think of as UI design, that focuses on how human beings and computers interact at ever-increasing levels of both complexity and simplicity. Because of the importance of the subject, this book aims to provide more relevant information that will be useful to students, academics, and researchers in the industry who wish to know more about its real-time application. In addition to providing content on theory, cognition, design, evaluation, and user diversity, this book also explains the underlying causes of the cognitive, social and organizational problems typically devoted to descriptions of rehabilitation methods for specific cognitive processes. Also described are the new modeling algorithms accessible to cognitive scientists from a variety of different areas.

This book is inherently interdisciplinary and contains original research in computing, engineering, artificial intelligence, psychology, linguistics, and social and system organization as applied to the design, implementation, application, analysis, and evaluation of interactive systems. Since machine learning research has already been carried out for a decade in various applications, the new learning approach is mainly used in machine learning-based cognitive applications. Since this will direct the future research of scientists and researchers working in neuroscience, neuroimaging, machine learning-based brain mapping, and modeling, etc., this book highlights the framework of a novel robust method for advanced cross-industry HCI technologies. These implementation strategies and future research directions will meet the design and application requirements of several modern and real-time applications for a long time to come.

Audience: A wide range of researchers, industry practitioners, and students will be interested in this book including those in artificial intelligence, machine learning, cognition, computer programming and engineering, as well as social sciences such as psychology and linguistics.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Cognitive Behavior and Human Computer Interaction Based on Machine Learning Algorithms by Sandeep Kumar,Rohit Raja,Shrikant Tiwari,Shilpa Rani in PDF and/or ePUB format, as well as other popular books in Computer Science & Artificial Intelligence (AI) & Semantics. We have over one million books available in our catalogue for you to explore.

1
Cognitive Behavior: Different Human-Computer Interaction Types

S. Venkata Achyuth Rao1*, Sandeep Kumar2 and GVRK Acharyulu3
1CSE, SIET, Hyderabad, Telangana, India
2Computer Science and Engineering Department, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andra Pradesh, India
3Operations & Supply Chain, MBA (Healthcare & Hospital Management), School of Management Studies, University of Hyderabad, Telangana, India
*Corresponding author: [email protected]
Abstract
Cognitive behavior plays a significant and strategic role in human-computer interaction devices that are deployed nowadays, with artificial intelligence, deep learning, and machine learning computing techniques. User experience is the crucial factor of any successful interacting device between machine and human. The idea of providing a HCUIMS is to create interfaces in terms of the bottom level of any organization as Decision Processing User Interacting Device System (DPUIDS), next at middle level management, Decision Support User Interacting Device Systems (DSUIDS), lastly at executive level, Management Information User Interacting Device System (MIUIDS), where decisions can take at uncertainty at various catastrophic situations. Here are specific gaps demonstrated in the various user’s processes in communicating with computers and that cognitive modeling is useful in the inception phase to evolve the design and provide training.
This is provided with the fulfillment of various interactive devices like Individual Intelligences Interactions (I3), Artificial and Individual Intelligences Interaction (AI3), Brain-Computer Interaction (BCI), and Individual Interactions through Computers (I2C) in a playful manner to meet the corporate challenges in all stakeholders of various domains with better user experience.
Keywords: Cognitive behavior, user experience, interacting devices, modeling, intelligence

1.1 Introduction: Cognitive Models and Human-Computer User Interface Management Systems

Cognitive models are useful in assessing to make predictions ease at top-level management systems in several aspects or many variables to interact and provide the approximate behavioral aspects observed in various experimental empirical studies. In a real-world lifetime situation, many factors are influenced to produce outcome reports as a behavioral analysis report. This is done neural processing data with the representation of patterns. These models outcome in terms of processes and products interact with various people which are shown in the empirical experiments. These below are necessary tools for psychologists to interact with various designers who care about cognitive models. These models for HCI have an adequate different goal to use necessary interfaces better for users. In general, there are at least three cognitive models in service as a general goal [1].
  • Interactive user behavioral predicting systems
  • Adaptive interaction observatory changing systems
  • Group interaction model building systems

1.1.1 Interactive User Behavior Predicting Systems

Human behavior predicting system interface is designed and deployed as the interaction and communication between users and a machine, an automatic dynamic, versatile system, through a user-machine interface [2]. There are strongly related real-world assumptions, and aspects are there to distinguish the domain of user-machine automatic dynamic, versatile systems, and user-computer interaction. For 50 years onward, the investigations on research in this domain are going on with different interactive human predicting systems that are evolved with the necessary propagated embedded events via a hardware and software interaction built-in displays. The best and emerging ambient designs of user interaction automatic predicting system applications have a right market place and gain values vertically in all the verticals for many products and services in various sectors like medical, transportation, education, games, and entertainment, which are the needs of the industry [3].

1.1.2 Adaptive Interaction Observatory Changing Systems

An adaptive interactive observatory system acquires its psychological aspects to the independent user based on inferences of the user prototype acquisition and reports involving activity in learning, training, inference, or necessary constraints of the decision process. The primary and needful goal of adaptive interaction observatory changing system interfacing adaptation is to consider unique perceptual or physical impairments of individual users; it allowed them to use a dynamic system more flexibly, efficiently, with minimal errors and with less frustration. An adaptive interaction observatory system interface is an embedded software artifact that improves its functionality to interact with an individual user by prototype model, thereby constructing a user model based on partial psychological considerable experience with that user [4].
As there are widespread of www, internet, and gopher services among the population day by day, more sophisticated variety of softwares, emerging technologies involve hardware events, gadgets, widgets, and events that are more and more highly interactive and responsive. Only limited early individual novice people are doing programs on punch cards and submitting late nights and overnight jobs, and subsequently time-sharing systems and debug monitors, text editors have become slower and slower and depend on multiple cores and moving forward to parallel processing. The latest emerging operating systems and real-time operating systems support various interactive software like what you see and what you get. The editor system software is too high for interactive computer games, most efficient and eminent embedded systems, automotive responsive, interactive, and adaptive conservative systems in layered interactive graphical user interfaces, and such subscribers and listeners are the key roles of adaptive interaction observatory changing systems. Such systems have been treated as an essential part of any business and academic lives with a trillion people depend on them to move toward their daily lives. Most academic work on machine learning still focuses on refining techniques and humiliating the steps that may happen at foreseen and after their invocation. Indeed, most investigations, conferences, workshops, and research interests, especially media and entertainment, virtual reality, simulation, modeling, and design, still emphasize differences between broader areas of learning methods. Eventually, evidenced by the decision-tree induction, the design analysis of algorithms, case-based reasoning methods, and statistical and probabilistic schemes often produce very similar results [5].

1.1.3 Group Interaction Model Building Systems

This chapter’s main objective is to describe the existing cognitive framework activities on group modeling information systems using synergy responsive dynamics. Such information systems are very few and necessary to be applied in hybrid organizations in order to support to increase in a wide range of business expansion and to take their strategic decisions. In this cognitive group interaction model building theory, the vital methodological dynamics were first located under the individual user interactions and then classified to allow an intensive idea to be given as a requirement analysis report for group activity prototype being a building system consideration [6]. The outcome of this brainstorming dynamics indicates the existing methods to propose a global view of interaction model systems are very rare. Also, three complex issues...

Table of contents

  1. Cover
  2. Table of Contents
  3. Title Page
  4. Copyright
  5. Preface
  6. 1 Cognitive Behavior: Different Human-Computer Interaction Types
  7. 2 Classification of HCI and Issues and Challenges in Smart Home HCI Implementation
  8. 3 Teaching-Learning Process and Brain-Computer Interaction Using ICT Tools
  9. 4 Denoising of Digital Images Using Wavelet-Based Thresholding Techniques: A Comparison
  10. 5 Smart Virtual Reality–Based Gaze-Perceptive Common Communication System for Children With Autism Spectrum Disorder
  11. 6 Construction and Reconstruction of 3D Facial and Wireframe Model Using Syntactic Pattern Recognition
  12. 7 Attack Detection Using Deep Learning–Based Multimodal Biometric Authentication System
  13. 8 Feature Optimized Machine Learning Framework for Unbalanced Bioassays
  14. 9 Predictive Model and Theory of Interaction
  15. 10 Advancement in Augmented and Virtual Reality
  16. 11 Computer Vision and Image Processing for Precision Agriculture
  17. 12 A Novel Approach for Low-Quality Fingerprint Image Enhancement Using Spatial and Frequency Domain Filtering Techniques
  18. 13 Elevate Primary Tumor Detection Using Machine Learning
  19. 14 Comparative Sentiment Analysis Through Traditional and Machine Learning-Based Approach
  20. 15 Application of Artificial Intelligence and Computer Vision to Identify Edible Bird’s Nest
  21. 16 Enhancement of Satellite and Underwater Image Utilizing Luminance Model by Color Correction Method
  22. Index
  23. End User License Agreement