2.1 Introduction
The term polymer, and more specifically polymeric, was coined in 1832 by Berzelius [1]. Parallel to the development of chemistry as a science, and in complete analogy to its evolution, the industrial importance of polymer science and technology began long before establishing the scientific foundations of science itself. Although cellulose was isolated and chemically modified throughout the nineteenth century as a substitute for silk and ivory, the real breakthrough in industrial production of modified natural polymers came in 1839 with the vulcanization of natural rubber by Goodyear, and concerning fully synthetic polymers in 1908, by Baekeland, with the development of phenolic resins known as Bakelites.
However, despite the commercial success of polymers or macromolecules, at the beginning of the 1920s, their structure was completely unknown since the colloidal theory was in force, which stated that polymers were simple associations of molecules of relatively small molecular mass. Thus, in 1920, Staudinger, professor of organic chemistry at the ETH in Zurich, published an article entitled “Über Polymerisation” [2], which describes various polymer formation reactions called polymerization, in which discrete molecules react with each other, giving rise to structural units that are repeated by formation of conventional covalent bonds. This radically new concept of polymers, referred to by Staudinger as “Makromoleküle” in 1922 [3], coining the term macromolecules, covered both synthetic and natural or modified polymers, reinforcing his proposition of polymers as long polymer chains, thus laying the foundations of polymerization and polymer science and technology.
The development and description of the structure of macromolecules paved the way to the precisely designed architecture of synthetic polymers to meet the technological needs of today’s highly technical society. Thus, the buildout of conventional random chain or step-growth polymerization and copolymerization techniques based on radically initiated polymerization or on well-known organic reactions afforded an impressive number of structures leading to polymers designed to have target properties. However, recent polymerization techniques allowed for the easy preparation of precise structures, in terms of blocks and chain size and distribution that are basic for fine-tuning the properties of responsive polymers. Among these techniques are the evolution of anionic polymerization, that is, controlled/living radical polymerization (e.g. atom transfer radical polymerization, reversible addition-fragmentation chain transfer polymerization and nitroxide-mediated polymerization [4], and chain growth polycondensation [5]. Also, highly efficient techniques for modifying polymers, in terms of yield, lack of side reactions, smooth conditions and tolerance to functional groups, such as “click chemistry”, have fostered the evolution of smart polymers from the viewpoint of design of the polymer and the response mechanism [6].
Thus, the science and technology of polymers is directed today towards obtaining and studying special polymers, prepared directly by synthesizing new monomers or through chemical and physical modifications of pre-existing polymers, and it has become a cutting-edge science, eminently interdisciplinary, which is on the frontiers of chemistry, physics, engineering and biology, and which also requires knowledge about synthesis, characterization, structure, processing, properties and behaviour of materials. The main objectives of this branch of scientific research focus on the preparation of materials with high modulus, high thermal and oxidative resistance, non-flammable, electroactive, photosensitive, biopolymers, polymers with non-linear optical properties, nanomaterials, multicomponent systems with special properties, selective materials for separation or analysis techniques, for medical applications, with biodegradable structures, support for heterogeneous catalysis or for the automatic synthesis of proteins or nucleic acids and so on.
In this way, polymers are currently part of a wide range of structural, functional and special application materials, which find application in the construction, aeronautical, automotive, container and packaging industries, electronics, in medical applications and so on, acquiring great importance in the economy and social welfare. The diversity of applications that polymeric materials find is due to the variety of physical and chemical properties that they can present, which are intrinsically related to their structure, which derives from the nature of the monomer and the bonds they form throughout the polymer chain, in addition to the length and functionality of the side groups that they may incorporate. This extraordinary development has notably boosted research in this field, one of the most active from a scientific and technological point of view today. The general advances in science and technology made in recent decades are mainly due to the rapid evolution of polymer science and technology, which has become a key instrument in humans’ development, safety, and quality of life.
The inherent macromolecular structure of polymers turns these materials sensitive to each macromolecular chain’s microenvironment, regardless of the state, solid or solution. Thus, several variables, such as temperature, humidity and mechanical stress, change the way each structural unit of each chain interacts intra- and intermolecularly with others and with solvents, absorbed species and so on. And this leads to changes that can be used to sense this microenvironment. The question is if we have a technique with the sensitivity to correlate these changes with a useful output or signal, thus entering into the field of smart polymers. This challenge is faced by chemically designing sensory monomers to get sensory polymers with easily measurable responses to specific targets, where these targets can be a physical stimulus (temperature, light, electrical and magnetic, mechanical, etc.), a chemical stimulus (pH, solvent, redox reaction, chemical species, etc.) or a biomolecule in biological media (enzymes, proteins, glucose, etc.).
The ability to respond to changes in environmental conditions is the key factor of the functionality of biomacromolecules, such as proteins, DNA and RNA, and the milestone of life itself, intimately related to sensing mechanisms of complex nature. And the goal in the design of advanced intelligent materials is intimately related to mimicking nature in selective and sensitive recognition, structural accommodation and response [7].
This book will show the potential of smart- or stimuli-responsive polymers as sensory materials concerning their ability to respond to different physical or chemical stimuli, such as temperature, electromagnetic pulses, pH, chemical species or biological molecules, changing different physicochemical properties (e.g. solubility, colour, fluorescence, electric conductivity or shape) [8]. The smart behaviour of these materials is boosted by the shapes that can be obtained by simple transformation of polymers, such as coatings, films, fibres or wires, coupled with the easy tuning of key properties, such as their hydrophilicity, porosity and mechanical properties. Also, the relevance of smart polymeric materials in biological and biomedical applications will be reported, for example, in the diagnosis of numerous diseases, selective release of drugs at cellular level, tissue engineering and regenerative medicine, biosensors for detection and immobilization of biomolecules and cell therapy and precision medicine.
There are multiple ways of classifying this kind of polymers a...