Neue Konzepte und Technologien für diodengepumpte, hochrepetierende Nanosekundenlaser im Wellenlängenbereich von 213 nm bis 4,6 ?m
eBook - PDF

Neue Konzepte und Technologien für diodengepumpte, hochrepetierende Nanosekundenlaser im Wellenlängenbereich von 213 nm bis 4,6 ?m

,
  1. 174 pages
  2. English
  3. PDF
  4. Available on iOS & Android
eBook - PDF

Neue Konzepte und Technologien für diodengepumpte, hochrepetierende Nanosekundenlaser im Wellenlängenbereich von 213 nm bis 4,6 ?m

,

About this book

Als Grundlage dienen diodengepumpte Festkörperlaser, deren Emissionswellenlängen von 1064 und 1342 nm mit verschiedensten Techniken der nichtlinearen Optik in andere Spektralbereiche konvertiert werden. Die Motivation hierfür geht von Anwendungen aus, deren spezielle Anforderungen von bislang verfügbaren Lasern nicht erfüllt werden können. Eine Vielzahl technologischer Aspekte, die in Anwendung eine entscheidende Rolle spielen, wie z.B. ein kompakter Aufbau oder eine hohe Langzeitstabilität werden bei der Entwicklung der Systeme von vorneherein berücksichtig.Das Konzept der Laser basiert auf der Verwendung fasergekoppelter Diodenlasermodule hoher Brillanz, die in einer longitudinalen Pumpgeometrie sehr effizient zur optischen Anregung von Neodym dotiertem Yttrium-Vanadat (Nd: YVO4) eingesetzt werden. Basierend auf dem Standard-Laserübergang bei 1064 nm wird ein aktiv gütegeschalteter Laser mit einer mittleren Ausgangsleistung von 4, 6 W mit Impulsdauern von 8, 9 ns bei einer Pulsrepetitionsrate von 15 kHz realisiert. Die emittierte Strahlung ist beugungsbegrenzt mit einem M2 kleiner 1, 1. Zur optionalen Leistungsskalierung wird dieser Laser in einer Verstärkerstufe im Einfachdurchgang auf eine mittlere Ausgangsleistung von 13 W nachverstärkt.Die Verwendung des Laserübergangs von 1342 nm in Nd: YVO4 eröffnet völlig neue Möglichkeiten spezielle Spektralbereiche mit den Mitteln der nichtlinearen Optik zu erreichen. Ein hierfür optimierter Laser erreicht unter Verwendung einer Pumpdiode eine mittlere Ausgangsleistung von 2, 1 W mit Impulsdauern von 9, 2 ns bei einer Pulsrepetitionsrate von 10 kHz. Zur Leistungssteigerung wird das Resonatorkonzept modifiziert und ein Laseroszillator mit zwei Pumpdioden realisiert. Dieser erreicht bei 15 kHz eine mittlere Leistung von 4, 9 W bei einer Impulsdauer von 11 ns. Die entwickelten Laser zeichnen sich aus durch ihren hohen Wirkungsgrad, eine kompakte Bauform und sehr kurze Impulsdauern. Aufgrund der damit verbundenen hohen Spitzenleistungen wird in Verbindung mit einer hervorragenden Strahlqualität die Eignung für optisch nichtlineare Prozesse sichergestellt.Aufbauend auf diesen Lasern werden verschiedene Konzepte untersucht, um die Laserstrahlung mit den Mitteln der nichtlinearen Optik in andere Spektralbereiche zu konvertieren.Die Erzeugung der fünften Harmonischen von 1064 nm liefert Laserstrahlung im tiefen Ultraviolett bei 213 nm. Erstmals wurde über die Summenfrequenzmischung der zweiten und dritten Harmonischen ein kompaktes, langzeitstabiles Lasersystem mit einer mittleren Ausgangsleistung von bis zu 154 mW realisiert. Die Impulsdauer verkürzt sich bei der Frequenzkonversion auf 5, 3 ns bei einer Pulsrepetitionsrate von 15 kHz. Herausragend ist hierbei auch die nahezu erhaltene Strahlqualität der emittierten Strahlung mit einem M2 von 1, 4.Zur effizienten Erzeugung von Laserstrahlung im roten und blauen Spektralbereich werden die Harmonischen von 1342 nm genutzt. Die erreichte mittlere Ausgangsleistung bei 671 nm beträgt 1, 8 W bei einer Impulsdauer von 8 ns. Im blauen Spektralbereich, bei 447 nm, beträgt die erreichte Ausgangsleistung 1, 4 W bei einer Impulsdauer von 12 ns. Die Kombination der hohen Ausgangsleistung, der exzellenten Strahlqualität und kurzen Impulsdauer ist bisher einzigartig.Insbesondere medizinische Anwendungen in den Bereichen Dermatologie und Ophtalmologie benötigen neuartige Lasern im gelben Spektralbereich. Hierfür werden zwei völlig unterschiedliche Konzepte untersucht. Der erste Ansatz zur Erzeugung von Laserstrahlung im gelben Spektralbereich stellt ein frequenzverdoppelter Selbstramanlaser dar. Unter Ausnutzung der stimulierten Raman Streuung in YVO4 wird eine mittlere Ausgangsleistung von 1, 5 W bei einer Wellenlänge im nahen Infrarot von 1176 nm erzeugt.Der zweite Ansatz verspricht höhere mögliche Ausgangsleistungen im gelben Spektralbereich. Er nutzt die Summenfrequenzmischung (SFG) zweier synchronisierter Laseroszillatoren bei 1064 nm und 1342 nm. Durch die phasenstarre Kopplung des AOM Triggers an die RF-Welle wird der zeitliche Jitter der jeweiligen Nanosekundenimpulse zueinander auf etwa 500 ps reduziert. Vergleichende SFG-Experimente werden in den optisch nichtlinearen Materialien LBO und BiBO durchgeführt. Die höchste mittlere Leistung bei 593 nm wird mit 1, 6 W in LBO erreicht und erfüllt damit bereits die Anforderungen vieler Applikationen. Darüberhinaus demonstrieren diese Untersuchungen das Potential dieses Konzepts und können als Grundlage für eine Vielzahl anderer Experimente angesehen werden.Zur Erzeugung von leistungsstarker Laserstrahlung im mittleren Infrarot wird mit dem Oszillator-Verstärkersystem bei 1064 nm ein optisch parametrischer Generator basierend auf periodisch gepoltem MgO: LiNbO3 gepumpt. Das System ist über den kompletten Frequenzbereich von 3, 5 bis 4, 6 ?m stufenlos abstimmbar und erreicht mittlere Ausgangsleistungen von bis zu 700 mW bei 3, 7 ?m und sogar noch 170 mW bei 4, 6 ?m. Die absolute Wellenlängengenauigkeit der entwickelten automatisierten Abstimmung ist ohne die Verwendung eines Spektrometers besser als 0, 05 % der Wellenlänge.Im letzten Kapitel wird gezeigt, dass sich auch der Laser bei 1342 nm bestens zum effizienten Pumpen eines optisch parametrischen Generators (OPG) eignet. Mit diesem Konzept lässt sich der Bereich der Entartung von 1064 nm gepumpten Systemen um 2 ?m erschließen. Analog dazu wird ein bei 671 nm gepumpter OPG realisiert, der abstimmbare Strahlung im Bereich von 1100 nm erzeugt. Beide Konzepte sind bislang einzigartig und nicht in der Literatur veröffentlicht.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Neue Konzepte und Technologien für diodengepumpte, hochrepetierende Nanosekundenlaser im Wellenlängenbereich von 213 nm bis 4,6 ?m by in PDF and/or ePUB format. We have over one million books available in our catalogue for you to explore.

Information

Year
2008
Print ISBN
9783867276054
eBook ISBN
9783736926059
Edition
1

Table of contents

  1. 9783867276054.jpg
  2. Diss2kleiner.pdf