Ultrabreitbandige Antennen für Kommunikation und Sensorik in der Medizintechnik
eBook - PDF

Ultrabreitbandige Antennen für Kommunikation und Sensorik in der Medizintechnik

,
  1. 212 pages
  2. English
  3. PDF
  4. Available on iOS & Android
eBook - PDF

Ultrabreitbandige Antennen für Kommunikation und Sensorik in der Medizintechnik

,

About this book

Diese Arbeit behandelt ultrabreitbandige Antennen für impulsbasierte Systeme und deren Anwendung in der Medizintechnik. Potentielle Einsatzgebiete im medizinischen Umfeld erstrecken sich dabei von der Kommunikationstechnik bis zur Sensorik, weshalb sowohl Antennen mit omnidirektionalem Strahlungsverhaltenals auch mit hoher Richtwirkung betrachtet werden.Als allgemeines Konzept zur Entwicklung der Antennen werden bekannte Strukturen mit breitbandigem Verhalten kombiniert und damit neuartige UWB-Antennen mit besseren Eigenschaften im Vergleich zu den Basisstrukturen geschaffen. Als genereller Grundsatz wird dabei eine symmetrische Speisung der Antennen zur Unterdrückung von parasitären Effekten durch Mantelwellen und planare Strukturen für eine einfache Herstellbarkeit verknüpft mit geringen Fertigungskosten verfolgt.Aus einem Dipolelement zusammen mit einer kreisförmigen Schlitzantenne lässt sich eine Antenne mit guter Impedanzanpassung und äußerst gleichmäßigem Strahlungsverhalten im FCC-Frequenzbereich von 3, 1 GHz bis 10, 6 GHz realisieren. Diese Antenne weist eine geringe Dispersion auf, was bei impulsbasierten Systemen zu einer geringen Impulsverbreiterung führt. Durch den Einsatz von zwei Dipolelementen, die orthogonal zueinander im kreisförmigen Schlitzstrahler angeordnet sind, kann die dipolgespeiste Schlitzantenne auf eine dual polarisierte Variante mit einer besseren Omnidirektionalität erweitert werden. Eine Antenne dagegen mit hoher Richtwirkung wird durch die Kombination der dipolgespeisten Schlitzantenne mit einem dielektrischen Stabstrahler erzielt. Dabei wird das inhärent breitbandige Verhalten des Stabstrahlers ausgenutzt und die planare Antenne zur effektiven Speisung eingesetzt. Diese Antenne besticht im Vergleich zu UWB-Richtantennen aus der Literatur durch ihre Kompaktheit und die einfache Herstellbarkeit bei gleichzeitig hohem Antennengewinn. Ein flaches Antennenprofil auf Kosten einer geringeren Richtwirkung und Bandbreite bietet die vorgestellte differentiell gespeiste gestapelte Patchantenne. Alternativ dazu kann eine Anordnung aus mehreren flachen planaren UWB-Antennen mit geringer Richtwirkung als Einzelelement verwendet werden, um insgesamt eine hohe Strahlbündelung zu erhalten. Dies wird durch die Untersuchung einer Gruppenantenne aus vier dipolgespeisten Schlitzantennen aufzeigt. Die Charakterisierung der Gruppenantenne im Zeitbereich bestätigt dabei, dass im Impulsbetrieb ein großer Antennenabstand in Relation zur Wellenlänge im Zeitbereich zu kleinen Nebenmaxima im Gegensatz zum Frequenzbereich führt. Außerdem wird ein neues Systemkonzept praktisch evaluiert, mit dem mit einer Gruppenantenne aus aktiven Einzelelementen eine Strahlschwenkung möglich ist. Ein aktives Element setzt sich dabei aus einem Impulsgenerator und der Vivaldi-Antenne zusammen. Die Strahlschwenkung wird durch eine einfache Phasenverschiebung des niederfrequenten Taktsignals des Impulsgenerators anstelle einer aufwändigeren Zeitverzögerung durch ein Laufzeitglied nach dem Impulsgenerator erzielt. Ein besonders interessantes Anwendungsgebiet der impulsbasierten UWB-Funktechnologie ist aufgrund des geringen Leistungsverbrauchs und der hohen Datenraten die Kommunikation mit Implantaten. Zu diesem Zweck wird erstmalig eine miniaturisierte, gewebeoptimierte UWB-Antenne entwickelt und in einer Gewebeersatzflüssigkeit in realitätsnahem Umfeld bezüglich Impedanz- und Strahlungsverhalten charakterisiert. Aufgrund der geringen Abmessungen mit einer Breite und Höhe von jeweils 11 mm bei einer Dicke von 1 mm ist diese mit einer symmetrischen Streifenleitung gespeiste Schlitzantenne ein geeigneter Kandidat für zukünftige medizinische Implantate mit UWB-Funktechnologie, wie anhand einer unidirektionalen Datenübertragung mit einer Geschwindigkeit von 100 Mbit/s in einer Gewebeersatzflüssigkeit mit Hilfe eines modular aufgebautenEnergiedetektors demonstriert wird.Abschließend werden mit einem realisierten UWB-Radarsystem basierend auf einem Korrelationsempfänger mögliche Einsatzfelder in der medizinischen Sensorik untersucht, wobei die Messung der Vitalfunktionen und die Bestimmung von Organbewegungen im Vordergrund stehen. Dazu werden verschiedene Operationsweisen des Radars eingesetzt und ein spezielles Kalibrierungsverfahren zur Verbesserung der Trennung von Zielen präsentiert. Unter speziellen Laborbedingungen können Atmung und Herzschlag direkt durch die Beobachtung der Reflexion am Brustbereich bestimmt werden. Die Information des Herzschlags ist dabei allerdings sehr fehlerbehaftet, weshalb eine kontinuierliche Erfassung des Entfernungsprofils erfolgversprechender ist. In diesem Operationsmodus können mit dem Radarsystem jedoch nur langsam veränderliche Bewegungen detektiert werden, weshalb lediglich die Atmung einer Person bei kontinuierlicher Datenerfassung beobachtet werden kann. Für die Detektion des Herzschlags und von Organbewegung sind daher Optimierungen des Radars bezüglich der Hardware zur Verbesserung des SNR-Werts und bezüglich der Signalverarbeitung zur besseren Separation von Signalen mit geringer Amplitude erforderlich.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Ultrabreitbandige Antennen für Kommunikation und Sensorik in der Medizintechnik by in PDF and/or ePUB format. We have over one million books available in our catalogue for you to explore.

Information

Year
2011
Print ISBN
9783869557519
eBook ISBN
9783736937512
Edition
1

Table of contents

  1. Inhaltsverzeichnis
  2. Formelzeichen, Indizes und Abkürzungen
  3. Einleitung
  4. Beschreibung und Charakterisierung von ultrabreitbandigen Antennen
  5. Symmetrisch gespeiste ultrabreitbandige Antennen für den Freiraum
  6. UWB-Gruppenantennen und elektronische Strahlschwenkung
  7. UWB-Antenne für die Kommunikation mit Implantaten
  8. UWB-Demonstrationssysteme für medizinische Anwendungen
  9. Zusammenfassung
  10. Ultrabreitbandige Antennen für den Freiraum
  11. Ultrabreitbandiger Übergang von Streifen- auf Mikrostreifenleitung
  12. Simulation einer schmalen gewebeoptimierten UWB-Monopolantenne
  13. Ergänzende Diagramme
  14. Literaturverzeichnis