Verfahren zur automatisierten Teilentladungsdiagnostik von Energiekabeln
eBook - PDF

Verfahren zur automatisierten Teilentladungsdiagnostik von Energiekabeln

,
  1. 188 pages
  2. English
  3. PDF
  4. Available on iOS & Android
eBook - PDF

Verfahren zur automatisierten Teilentladungsdiagnostik von Energiekabeln

,

About this book

Im Rahmen dieser Arbeit wurden Verfahren vorgestellt, die sich für den Einsatz zur automatisierten Verarbeitung und Auswertung von Teilentladungsmessdaten an Energiekabelstrecken eignen. Hierdurch lassen sich sowohl in der Offline- als auch in der Online-Kabel-TE-Diagnose verbesserte Ergebnisse erzielen und letztendlich Kosten sparen, da die Verfahren eine Erleichterung für den Bediener darstellen.Ein Schwerpunkt dieser Arbeit wurde auf alternative Methoden zur Ankunftszeitbestimmung von Impulsen gelegt, welche für eine Ortung mittels Reflektometrie im Zeitbereich (TDR) benötigt werden. Durch die Dispersion auf dem Kabel treten Unterschiede in den Impulsanstiegszeiten auf, die zu systematischen Ortungsfehlern führen können, wenn ausschlieslich die Impulsmaxima zur Ortung verwendet werden (Peak-Peak Methode). Ein weiteres Problem bei der Offline-Diagnostik stellt die Blindlänge dar. Hierbei kommt es nahe den Kabelenden zu Impulsüberlagerungen, was sowohl eine genaue Ladungsbestimmung, als auch die Ortung erschwert. Auch hier lassen sich Verbesserungen mittels spezieller Algorithmen erzielen. Untersucht wurden Verfahren, welche die Stirn oder den Fuspunkt von Impulsen ausgeben (EC, AIC, SM), über Änderungen der Phase orten (PM) oder eine Impulsabstandsmessung mittels Autokorrelation (AK) durchführen. Nicht alle Verfahren eignen sich hierbei gleich gut. Doch gibt es durchaus robuste Alternativen zur Peak-Peak Methode, die je nach Anwendungsfall gewählt werden können.Vor allem bei der TE-Messung an verlegten Kabelstrecken unter Vor-Ort-Bedingungen treten starke Störsignaleinkopplungen auf, die sich je nach Messumgebung deutlich unterscheiden. Bei der Offline-Diagnostik, bei welcher der Ort letztlich über eine Impulsreflektion am sich im Leerlauf befindenden Kabelende bestimmt wird, tritt die zusätzliche Schwierigkeit auf, dass große Dynamikunterschiede der auszuwertenden Einzelimpulse auftreten. Dies hat zur Folge, dass, zusätzlich zu den Störeinkopplungen, mit Quantisierungs- und Verstärkerrauschen im Bereich der zu identifizierenden und zu ortenden Impulse zu rechnen ist. Das Ziel, solche störenden Signalanteile in den Messdaten zu reduzieren, wurde durch zwei Ansätze realisiert. Zum Einen wurden Verbesserungen an der Messhardware durchgeführt, indem eine Schirmung und Netzfilterung am Hochspannungskoppelkondensator vorgenommen wurde. Hierbei wurde viel Wert auf Praxisnähe (Mobilität und Flexibilität) gelegt, da die örtlichen Gegebenheiten stark variieren. Im Rahmen der Teilnahme bei Messungen an Kabelstrecken in Verteilnetzen konnten hierfür Erfahrungen gesammelt werden. Zum Anderen wurden Rauschen und Störpegel im Messsignal durch geeignete Signalverarbeitungsverfahren erheblich reduziert. Hier wurden sowohl verbreitete Verfahren eingesetzt (DWT, SGWT), die auf der Wavelet-Transformation beruhen, als auch ein neuartiges Verfahren, die Empirische Moden Dekomposition (EMD), welches im Rahmen dieser Arbeit erstmals an Kabel-TE-Messdaten eingesetzt wurde. Durch geeigneten Einsatz dieser Methoden ist es möglich, je nach Störumgebung, Anteile der Störsignale insoweit zu entfernen, dass ein Nutzsignal als solches erkannt und eine TE-Ortung durchgeführt werden kann.Ein weiterer Fokus der Arbeit lag auf der Bereitstellung eines Kabel-TE-Modells, welches es ermöglicht, Offline-Kabel-TE-Reflektogramme zu modellieren. Diese können wiederum entweder zur Ortung oder zur Identifikation von gemessenen Reflektogrammen dienen. Mittels eines solchen Modells können auch Kabelstrecken modelliert werden, die aus mehreren Kabelsegmenten unterschiedlichen Typs bestehen oder Verzweigungen enthalten. Hierbei können zusätzliche Reflektionen im Messsignal auftreten, die eine konventionelle TDR-Ortung sehr erschweren. Grundvoraussetzung für ein solches Modell sind möglichst genaue Angaben über den geometrischen Aufbau der Kabel und Materialien. Das Modell wurde im Rahmen dieser Arbeit an einer VPE-Kabelstrecke im Labor verifiziert. Unter Berücksichtigung des Übertragungsverhaltens und der Eingangsimpedanz der Messeinrichtung konnte eine sehr hohe Deckungsgleichheit zwischen modelliertem und gemessenem Reflektogramm erzielt werden. Ü ber ein Korrelationsverfahren wurde die modellbasierte Ortung durchgeführt und eine künstliche Kabel-TE-Fehlstelle mit einem sehr kleinen Ortungsfehler geortet.Zur Bestimmung der Ladung von Kabel-TE-Impulsen wurden verschiedene Methoden miteinander verglichen. Hierbei zeigt sich, dass die untersuchten konventionellen Verfahren Integration im Zeitbereich, Quasiintegration und Ladungsbestimmung mittels Impulsamplitude, teilweise sehr unterschiedliche Werte liefern. Die Anzeige der Ladung ist sowohl vom gewählten Datenfenster, als auch vom Entstehungsort der TE abhängig, da Effekte wie Dämpfung, Verluste und Teilreflektionen an Muffen die jeweilige Berechnung beeinflussen können. Diese Probleme wurden durch eine dynamische Anpassung der Integrationsfenster sowie durch eine dämpfungskompensierte Ladungsbestimmung gelöst. Somit ist eine verbesserte Ladungsbestimmung möglich.Die vorgestellten Verfahren wurden sowohl zur Auswertung von TE-Signalen aus Messungen an Kabelstrecken im Labor, als auch an ausgewählten TE behafteten, in Mittelspannungsnetzen verlegten Kabelstrecken im Rahmen einer MATLAB Toolbox implementiert und erfolgreich eingesetzt.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Verfahren zur automatisierten Teilentladungsdiagnostik von Energiekabeln by in PDF and/or ePUB format. We have over one million books available in our catalogue for you to explore.

Information

Year
2012
Print ISBN
9783954041114
eBook ISBN
9783736941113
Edition
1

Table of contents

  1. Vorwort
  2. Inhalt
  3. Kapitel 1 Einleitung
  4. Kapitel 2 Teilentladungsmessung
  5. Kapitel 3 Modellierung
  6. Kapitel 4 Aufbau einesOffline-Kabel-TE-Messsystems
  7. Kapitel 5 Signalverarbeitung
  8. Kapitel 6 Ergebnisse
  9. Kapitel 7 Zusammenfassung
  10. Literaturverzeichnis