About this book
ZusammenfassungZur Bekämpfung der Armut ist es nicht nur wichtig, Haushalte zu identifizieren, die arm sind, sondern auch solche, die dem Risiko unterliegen, arm zu werden. In dieser Arbeit wird die Genauigkeit von Vorhersagen des Risikos gegenüber Einkommensarmut, bezeichnet mit Vulnerabilität der Armut, anhand von Querschnitts- und Paneldaten bewertet. Zur Analyse werden deutsche Paneldaten (das Sozio-oekonomische Panel, SOEP) herangezogen. Die Vorhersage, ob Haushalte armutsgefährdet sind oder nicht, basiert auf Regressionsmodellen mit unterschiedlichen Kovariablen (Haushaltseigenschaften bzw. Gruppen von Haushalten, stetiges Einkommen oder Einkommen in Klassen, Makrovariablen). Die Genauigkeit der Vorhersagen wird mit der Receiver Operating Characteristic (ROC) gemessen, die nicht nur den Anteil der richtig identifizierten armen Haushalte (True Positive Rate, TPR) sondern auch den Anteil der falsch als armutsgefährdet klassifizierten Haushalte (False Positive Rate, FPR) berücksichtigt. Die Schätzer mit Querschnittsdaten sind weniger genau als mit Paneldaten. Das ist auch der Fall, wenn zur Schätzung nur das Einkommen in zwei Klassen verwendet wird. Für Deutschland ist die Genauigkeit von Vulnerabilitäts-Schätzern selbst dann begrenzt, wenn Paneldaten vorliegen. Gründe dafür sind die niedrige Armutsquote und die hohe Mobilität der Haushalte in die Armut und aus der Armut heraus.AbstractIn order to reduce poverty it is clearly of interest to identify, not only those households that are poor, but also those that are at risk of becoming poor, i.e. vulnerable to poverty. In this research, the accuracy of the ex ante assessments of vulnerability to income poverty is investigated using cross-sectional and panel data. For this purpose, long-term panel data from Germany (the German Socio-Economic Panel, SOEP) are used and different regression models are applied to classify whether a household is vulnerable or not. These models include various covariates (household covariates or groups according to household characteristics, continuous or discrete previous-year-income, macro covariates). Predictive performance is assessed using the Receiver Operating Characteristic (ROC), which takes account of true positive as well as false positive rates. Estimates based on cross-sectional data are less accurate than those based on panel data. This is true even if only imprecise information about income, i.e. classification of households into two income groups, are known. In the case of Germany, the accuracy of vulnerability predictions is limited even when panel data are used. In part this low accuracy is due to low poverty incidence and high mobility in and out of poverty.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Vorwort
- Zusammenfassung
- Abstract
- Inhaltsverzeichnis
- Abbildungsverzeichnis
- Tabellenverzeichnis
- Abkürzungsverzeichnis
- Variablenverzeichnis
- 1 Einleitung
- 2 Die Messung der Vulnerabilität der Armut
- 3 Datenbeschreibung
- 4 Empirische Studien zur Vulnerabilität
- 5 Zusammenfassung und Ausblick
- A Anhang
- Literaturverzeichnis
