Regulation der Jasmonsäure-Synthese durch reversible Dimerisierung der Oxophytodiensäurereduktase 3 (OPR3)
eBook - PDF

Regulation der Jasmonsäure-Synthese durch reversible Dimerisierung der Oxophytodiensäurereduktase 3 (OPR3)

,
  1. 194 pages
  2. English
  3. PDF
  4. Available on iOS & Android
eBook - PDF

Regulation der Jasmonsäure-Synthese durch reversible Dimerisierung der Oxophytodiensäurereduktase 3 (OPR3)

,

About this book

ZUSAMMENFASSUNGJasmonsäure (JA) ist ein Phytohormon, welches sowohl bei der Regulation abiotischer und biotischer Stressantworten, als auch bei verschiedenen Entwicklungsprozessen der Pflanzen eine wichtige Rolle einnimmt. Die Oxophytodiensäurereduktase 3 (OPR3) ist maßgeblich an der Biosynthese der JA beteiligt und katalysiert dabei einen entscheidenden Schritt in den Peroxisomen: die Umsetzung des JA-Vorläufers 12-Oxophytodiensäure (OPDA) zu OPC-8: 0. Nach Verwundung oder Herbivorie akkumulieren innerhalb weniger Minuten JA und ihre bioaktive Form JA-Ile. Diese schnelle und transiente Zunahme könnte durch posttranslationale Aktivierung der JA-Biosyntheseenzyme erklärt werden. Die Beobachtung, dass OPR3 als sich selbst-inhibierendes Dimer kristallisiert, führte zu der Hypothese, dass der rasche JA-Anstieg durch reversible Dimerisierung der OPR3 ermöglicht wird und die Regulation durch Phosphorylierung/Dephosphorylierung erfolgen könnte. Es wird davon ausgegangen, dass die inaktive Form von OPR3 ein Homodimer darstellt, das durch Phosphorylierung stabilisiert wird. Weiterhin wird angenommen, dass in Antwort auf einen Stimulus dieses Dimer durch posttranslationale Modifikation (z. B. Dephosphorylierung an Position Y365) in ein aktives Monomer übergeht und anschließend, wenn es nicht mehr benötigt wird, durch Phosphorylierung erneut dimerisiert.In dieser Arbeit konnte mittels zweier Fluorophor-basierender Methoden (BiFC und FRET) die Dimerisierung der OPR3 aus Arabidopsis thaliana sowohl in Zwiebelepidermiszellen als auch in unterschiedlichen Organen von Arabidopsis beobachtet werden. OPR3-Varianten (AtOPR3E292K und AtOPR3Y365F) zeigten ein verringertes Dimerisierungspotential. Damit wurden zum ersten Mal die Homodimerisierung der OPR3 in vivo und die Bedeutung einzelner Aminsosäuren für die Dimerisierung nachgewiesen. Die Hypothese einer reversiblen OPR3-Dimerisierung und Aktivierung der JA-Synthese durch Bildung des OPR3-Monomers konnte durch zwei entscheidende Beobachtungen erhärtet werden. Sowohl nach Verwundung, als auch während der frühen Phasen der Antherenentwicklung, in denen Pflanzen JA benötigen, verschob sich das Monomer/Dimer Gleichgewicht von OPR3 in Richtung des Monomers. Dass eine posttranslationalen Modifikation für die OPR3-Dimerisierung notwendig ist, steht in Einklang mit der Beobachtung, dass OPR3 bei Expression in S. cerevisiae nicht in der Lage ist zu dimerisieren. Offenbar erfordert die Dimerisierung weitere Faktoren, die in Hefezellen nicht vorliegen. Eine Proteinkinase, welche für diese posttranslationale Modifikation der OPR3 verantwortlich ist, wurde in dieser Arbeit nicht identifiziert. Doch der Nachweis einer OPR3-Dimerisierung im Cytosol führte zu der Schlussfolgerung, dass die Kinase nicht notwendigerweise peroxisomal lokalisiert sein muss und dass die Suche auf cytosolisch lokalisierte Proteinkinasen ausgeweitet werden kann.SUMMARYJasmonic acid (JA) is a phytohormone which plays an important regulatory role in abiotic and biotic stress responses as well as in several plant developmental processes. 12-oxophytodienoic acid reductase 3 (OPR3) contributes to jasmonic acid biosynthesis and catalyzes a critical step in peroxisomes: the conversion of the jasmonic acid precursor 12-oxophytodienoic acid (OPDA) to OPC-8: 0.After wounding or herbivory JA and its bioactive form JA-Ile accumulate within a few minutes. This fast and transient increase can be explained by posttranslational activation of biosynthetic enzymes. The observation that OPR3 crystallizes as a self-inhibited dimer led to the hypothesis that the rapid JA burst is mediated by reversible dimerization of OPR3, which may be regulated by phosphorylation and dephosphorylation of the enzyme. It is postulated that the inactive form of OPR3 represents a homodimer, stabilized by phosphorylation. Furthermore it is assumed that in response to a stimulus this dimer dissociates into active monomers by posttranslational modification (e. g. dephosphorylation at position Y365) and, when not needed anymore, dimerizes again after re-phosphorylation.In this work dimerization of OPR3 from Arabidopsis thaliana could be observed in vivo in onion epidermal cells as well as in different organs of Arabidopsis by means of two fluorophor-based methods (BiFC and FRET). OPR3 variants (AtOPR3E292K and AtOPR3Y365F) showed a reduced dimerization potential in vivo, demonstrating the importance of these two residues. Thus, for the first time homodimerization of OPR3 and the importance of specific amino acids for dimerization were demonstrated in vivo. The hypothesis of reversible OPR3 dimerization, and activation of JA biosynthesis via formation of the OPR3 monomer, could be confirmed by two crucial observations. Both after wounding and during early phases of anther development, when plants need JA, the monomer/dimer equilibrium of OPR3 shifted toward the monomer.The assumption that OPR3 dimerization requires posttranslational modification was strengthened by the inability of OPR3 to dimerize when expressed in S. cerevisiae. Apparently, additional factors are needed for dimerization that are absent from yeast. A protein kinase responsible for posttranslational OPR3 modification, could not be identified in this thesis. However, detection OPR3 dimerization in the cytosol, led to the conclusion that the kinase is not necessarily localized in peroxisomes and that the search needs to be extended to include cytosolic protein kinases.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Regulation der Jasmonsäure-Synthese durch reversible Dimerisierung der Oxophytodiensäurereduktase 3 (OPR3) by in PDF and/or ePUB format. We have over one million books available in our catalogue for you to explore.

Information

Year
2012
Print ISBN
9783954041626
eBook ISBN
9783736941625
Edition
1

Table of contents

  1. Inhaltsverzeichnis
  2. I. ABKÜRZUNGSVERZEICHNIS
  3. II. ZUSAMMENFASSUNG
  4. III. SUMMARY
  5. 1 EINLEITUNG
  6. 2 MATERIAL UND METHODEN
  7. 3 ERGEBNISSE
  8. 4 DISKUSSION
  9. 5 LITERATURVERZEICHNIS
  10. 6 ABBILDUNGSVERZEICHNIS
  11. 7 TABELLENVERZEICHNIS
  12. ANHANG
  13. LEBENSLAUF
  14. ERKLÄRUNG
  15. DANKSAGUNG