Clustering in Linear and Additive Mixed Models
eBook - PDF

Clustering in Linear and Additive Mixed Models

,
  1. 176 pages
  2. English
  3. PDF
  4. Available on iOS & Android
eBook - PDF

Clustering in Linear and Additive Mixed Models

,

About this book

In der vorliegenden Arbeit wird die klassische Annahme von normalverteilten zufĂ€lligen Effekten im Rahmen gemischter Modelle durch zwei flexiblere Verteilungsannahmen ersetzt, die im Besonderen Gruppen von Individuen bilden können. Im ersten Ansatz wird eine penalisierte Mischung aus Normalverteilungen basierend auf dem "group lasso"- und dem "fused lasso"'-Ansatz fĂŒr die Verteilung der zufĂ€lligen Effekte angenommen. In einem alternativen Ansatz wird eine approximierte Dirichlet-Prozess-Mischung als Verteilung der zufĂ€lligen Effekte herangezogen, die die Clustereigenschaft des Dirichlet-Prozesses zum Aufdecken einer Gruppenstruktur ausnĂŒtzt. Dabei wird das Konzept der Dirichlet-Prozesse in die Likelihood-Inferenz ĂŒbertragen, indem ein EM-Algorithmus zum SchĂ€tzen von linearen gemischten Modellen mit approximierter Dirichlet-Prozess-Mischung vorgestellt wird. Des Weiteren wird dieser Ansatz auf den Fall additiv gemischter Modelle erweitert, wobei hier ein penalisierter Spline zur Modellierung des Zeiteffekts verwendet wird. FĂŒr diese Modellklasse wird außerdem eine rein bayesianische SchĂ€tzung basierend auf Markov-Ketten-Monte-Carlo-Methoden vorgestellt. Anwendungsbeispiele und Simulationsstudien veranschaulichen den Nutzen der vorgestellten Verfahren.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Clustering in Linear and Additive Mixed Models by in PDF and/or ePUB format. We have over one million books available in our catalogue for you to explore.

Information

Year
2013
Print ISBN
9783954044030
eBook ISBN
9783736944039
Edition
1

Table of contents

  1. Zusammenfassung
  2. Summary
  3. Vorwort und Danksagung
  4. Notation
  5. Contents
  6. 1. Introduction
  7. 2. Dirichlet Processes
  8. 3. Linear Mixed Models with a Group Fused Lasso Penalty
  9. 4. Linear Mixed Models with DPMs using EM Algorithm
  10. 5. Additive Mixed Models with DPMs using MCMC methods
  11. 6. Additive Mixed Models with DPMs using EM Algorithm
  12. 7. Conclusion and Outlook
  13. A. Appendix
  14. References