Techniques for Real World  Ground Penetrating Radar Data Analysis
eBook - PDF

Techniques for Real World Ground Penetrating Radar Data Analysis

,
  1. 216 pages
  2. English
  3. PDF
  4. Available on iOS & Android
eBook - PDF

Techniques for Real World Ground Penetrating Radar Data Analysis

,

About this book

AbstractGround Penetrating Radar (GPR) Data Analysis deals with the problem of shallow subsurface imaging, which is motivated by the daily work of engineers, \eg those of municipalities.The concrete problem tackled in this thesis is motivated by the fact, that, at least in Germany, municipalities have knowledge about the existence of supply lines such as gas and water pipelines to cross and follow urban streets, while their actual position is often uncertain.The consequences are obvious: once a street undergoes maintenance works, pipes are easily broken.This also causes heavy problems to residents who are cut off from some supplies for a period of time.This thesis approaches a solution to the object detection problem in GPR data by means of (semi-)automated data analysis techniques, using Machine Learning methods.The problem is treated as a specialized problem for object detection in image data.In this application context, it is possible to integrate certain background knowledge and processing techniques in well-known Machine Learning methods.The thesis formalizes the problem first.A technical framework for the analysis of Complex Engineering Raw Data – CERD -, as a generalization of our current data at hand, will be used for all analysis methods developed.From a thorough data analysis, it becomes clear that our data labels are unsuitable for directly applying supervised Machine Learning methods.Therefore, we will be obtaining suitable ground truth data by semi-manually labeling more than 700 images by hand.The second part of the thesis presents both, supervised and unsupervised Machine Learning techniques for the detection of buried object locations.Techniques are introduced within the general context of object detection techniques within image data.The integration of geometrical background knowledge is shown to be feasible in all methods developed.This thesis will contribute in the followings: *The methodology and suitability of high-quality ground truth data for GPR data analysis is presented.*A conceptual framework along with its technical framework for the analysis of CERD is presented.*Intuitive, state of the art analysis methods for the interpretation of GPR data are presented, discussed, and evaluated.ZusammenfassungDie Bodenradaranalyse (Ground Penetrating Radar – GPR) bezeichnet ein Forschungsfeld, welches nicht-destruktive Radartechnologie einsetzt, um unterirdische Strukturen sichtbar zu machen.Diese Arbeit beschĂ€ftigt sich mit dem Teilbereich der unterirdischen Leitungsortung unter Zuhilfenahme ĂŒberwachter maschineller Lernverfahren (Machine Learning Methoden).Halb-automatische Lernverfahren werden eingesetzt, da es sich um sehr große Datenmengen handelt, die derzeit noch vorwiegend hĂ€ndisch von Ingenieuren analysiert werden.Dieses stellt wesentliche Zeit-, Kosten- und Fehlerfaktoren dar, welche es zu optimieren gilt.Eine manuelle Bestimmung auf Basis bestehender VersorgungsleitungsplĂ€ne ist besonders in Deutschland nicht möglich, da diese auf teilweise mehrere Meter ungenau und unter UmstĂ€nden sogar unvollstĂ€ndig sind.Diese Doktorarbeit versucht, die Analyse von Bodenradardaten mit Hilfe ĂŒberwachter Lernverfahren des `Machine Learnings' zu automatisieren.Das allgemeine Vorgehen orientiert sich dabei an bekannten Bildverarbeitungsmethoden.DomĂ€nenspezifische Eigenschaften werden als Hintergrundwissen in die angewandten Verfahren integriert.Diese Arbeit besteht im wesentlichen aus zwei Teilen.Der erste Teil, bestehend aus den Kapiteln eins bis vier, fĂŒhrt die Problemstellung ein (Kapitel eins) und formalisiert diese (Kapitel zwei).Kapitel drei definiert den technischen Rahmen.Die vorliegenden Daten werden in Kapitel vier analysiert und vorverarbeitet.Aufgrund anwendungsspezifischer Besonderheiten wird in Kapitel fĂŒnf eine Methode dargestellt und eingesetzt, um qualitativ hochwertige Annotationen zu gewinnen, die die Grundlage fĂŒr zu entwickelnde Analyseverfahren darstellt.Der zweite Teil prĂ€sentiert und analysiert die QualitĂ€t von unĂŒberwachten (Kapitel sieben) und ĂŒberwachten (Kapitel sechs, acht, neun) Lernverfahren.Hintergrundwissen wird, wann immer möglich, fĂŒr eine QualitĂ€tsverbesserung integriert.Die wesentlichen Inhalte dieser Arbeit sind folgende: *Hochwertige Annotationen fĂŒr komplexe Sensordaten werden erhoben und aus verschiedenen Perspektiven verglichen und analysiert.*Ein konzeptuelles Framework fĂŒr die Analyse komplexer Sensordaten wird prĂ€sentiert und prototypisch implementiert.*Intuitive Verfahren fĂŒr die Bodenradar-Datenanalyse werden entwickelt, angepasst, vorgestellt und qualitativ verglichen.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Techniques for Real World Ground Penetrating Radar Data Analysis by in PDF and/or ePUB format. We have over one million books available in our catalogue for you to explore.

Information

Year
2014
Print ISBN
9783954046652
eBook ISBN
9783736946651
Edition
1

Table of contents

  1. Abstract
  2. Zusammenfassung
  3. Contents
  4. List of Figures
  5. List of Tables
  6. Nomenclature
  7. Abbreviations
  8. Chapter 1 Introduction
  9. Chapter 2 Problem Definition
  10. Chapter 3 A Technical Framweork for Complex Engineering Raw Data Analysis
  11. Chapter 4 Data Preparation
  12. Chapter 5 Gathering Accurate Hyperbola Annotations for Applying Machine Learning on GPR Data
  13. Chapter 6 Hyperbola Detection from Sparse Data
  14. Chapter 7 Unsupervised Object Detection from Dense Data
  15. Chapter 8 Supervised Object Detection by Patch-Based Classification
  16. Chapter 9 Hyperbola Curvature Inference from Dense Data
  17. Chapter 10 Conclusion and Future Work
  18. Appendix A