Rarefied Gas Flows and Dynamic Plasma Phenomena in Electric Propulsion Systems
eBook - PDF

Rarefied Gas Flows and Dynamic Plasma Phenomena in Electric Propulsion Systems

,
  1. 368 pages
  2. English
  3. PDF
  4. Available on iOS & Android
eBook - PDF

Rarefied Gas Flows and Dynamic Plasma Phenomena in Electric Propulsion Systems

,

About this book

Zu den aktuellen Entwicklungen in der Raumfahrtindustrie zĂ€hlen das stetig wachsende Interesse an miniaturisierten Satelliten sowie der immer hĂ€ufigere Einsatz elektrischer Antriebssysteme zu allgemeinen Lage- und Bahnregelungszwecken. Die Entwicklung miniaturisierter Satelliten erfordert ihrerseits den Einsatz von Antriebssystemen, die sehr kleine und prĂ€zise zu steuernde SchubkrĂ€fte erzeugen. Vor diesem Hintergrund stellen elektrische Triebwerke eine attraktive Option dar, die Antriebsanforderungen von Satelliten sowohl in herkömmlichen als auch in miniaturisierten GrĂ¶ĂŸen langfristig zu erfĂŒllen. Bei miniaturisierten Satelliten sind die Schubanforderungen oft mit niedrigen Treibstoff-Massenstromwerten und verhĂ€ltnismĂ€ĂŸig kleinen geometrischen charakteristischen LĂ€ngen verbunden. Dies kann zu verdĂŒnnten GaszustĂ€nden innerhalb der TriebwerksdĂŒsen fĂŒhren. Wegen der hohen KomplexitĂ€t der PlasmaphĂ€nomene innerhalb elektrischer Triebwerke sowie der typischerweise hohen Rechenanforderungen, die mit der Plasmamodellierung einhergehen, werden elektrische Antriebssysteme oft auf Basis empirischer Modelle und experimenteller Daten entwickelt. Der Fokus der vorliegenden Arbeit liegt auf den oben beschriebenen Herausforderungen und den dazugehörigen Forschungsfeldern: der Untersuchung verdĂŒnnter GaszustĂ€nde in transsonischen Strömungen sowie der Entwicklung numerischer ModellierungsansĂ€tze zur Beschreibung des Plasmaverhaltens innerhalb elektrischer Antriebssysteme.New trends regarding fundamental design approaches of orbital spacecraft have been developing in the space industry in recent years. They include an increased interest in miniaturized satellites as well as a general rise in the use of electric propulsion systems for orbit and attitude control. The successful implementation of miniaturized satellites requires the use of propulsion devices able to provide small and precise thrust and impulse levels. One technical solution able to meet the requirements of both standard-sized as well as miniaturized spacecraft involves the use of highly efficient and precise electric propulsion systems. In the particular case of miniaturized satellites, the propulsion requirements are often associated with low propellant mass flow rates and small characteristic geometrical lengths, potentially leading to the appearance of rarefied conditions inside the nozzles of the propulsion devices. Because of the high complexity of the plasma phenomena taking place inside such systems and the usually very high computational requirements associated with their numerical modelling, electric propulsion systems for space applications are usually designed based on empirical models and experimental data. The present work focuses on two key aspects outlined above: rarefied gas conditions in transonic micronozzle flows as well as the numerical modelling of plasma phenomena inside electric propulsion systems.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Rarefied Gas Flows and Dynamic Plasma Phenomena in Electric Propulsion Systems by in PDF and/or ePUB format. We have over one million books available in our catalogue for you to explore.

Information

Year
2021
Print ISBN
9783736973244
eBook ISBN
9783736963245
Edition
1

Table of contents

  1. Chapter 1 Introduction
  2. 1.1 Motivation
  3. 1.2 Basic setup
  4. 1.3 Goals and thesis outline
  5. Chapter 2 Theoretical Principles
  6. 2.1 Knudsen number and flow regimes
  7. 2.2 Lagrangian and Eulerian specification of the flowfield
  8. 2.3 Conservation of mass
  9. 2.4 Conservation of momentum
  10. 2.5 Conservation of energy
  11. 2.6 Ideal gas
  12. 2.7 The Laval nozzle
  13. 2.8 Fundamentals of plasma
  14. 2.8.1 Physical properties of plasma
  15. 2.9 Kinetic theory of gases
  16. 2.9.1 Fundamental concepts
  17. 2.9.2 Velocity distribution function and macroscopic properties
  18. 2.9.3 Maxwell distribution
  19. 2.9.4 Boltzmann equation
  20. 2.10 Summary
  21. Chapter 3 Computational Methods
  22. 3.1 Methods based on transport equations
  23. 3.1.1 Finite Difference Method
  24. 3.1.2 Finite Volume Method
  25. 3.1.3 Methods for unsteady problems
  26. 3.1.4 Solution algorithms for the Navier-Stokes equations
  27. 3.2 Direct Simulation Monte Carlo (DSMC)
  28. 3.2.1 Molecular transport
  29. 3.2.2 Molecular collisions
  30. 3.2.3 Implementation of boundary conditions
  31. 3.2.4 Macroscopic properties
  32. 3.3 Particle-In-Cell Method (PIC)
  33. 3.3.1 Particle motion - Lorentz solver
  34. 3.3.2 Field equations - Maxwell solver
  35. 3.3.3 Particle and force weighting
  36. 3.4 Summary
  37. Chapter 4 Transonic Gas Flows AcrossMultiple Flow Regimes
  38. 4.1 State of the art and previous studies
  39. 4.2 Experimental setup
  40. 4.2.1 Vacuum and measurement systems
  41. 4.2.2 Arcjet thruster and Laval nozzle
  42. 4.2.3 Experimental series
  43. 4.3 Numerical setup
  44. 4.3.1 Solved equations and numerical solver
  45. 4.3.2 Numerical mesh and boundary conditions
  46. 4.3.3 Numerical setup for DSMC simulations
  47. 4.4 Results and discussion
  48. 4.4.1 Experimental results
  49. 4.4.2 Navier-Stokes simulations
  50. 4.4.3 DSMC results
  51. 4.4.4 Comparison between Navier-Stokes and experimental results
  52. 4.4.5 Knudsen-dependent correcting function for the dimensionlesspressure drop
  53. 4.4.6 Molar mass dependency of the Knudsen function coefficients
  54. 4.4.7 Thrust and specific impulse
  55. 4.5 Summary
  56. Chapter 5 Development of a Kinetic PlasmaModel for Electric PropulsionSystems
  57. 5.1 Electric propulsion systems for spacecraft
  58. 5.2 State of the art and previous works
  59. 5.2.1 Resistojets
  60. 5.2.2 Arcjet thrusters
  61. 5.2.3 Ion thrusters
  62. 5.2.4 Hall thrusters
  63. 5.3 Development of a kinetic plasma model
  64. 5.3.1 General modelling concept
  65. 5.3.2 Basis DSMC solver
  66. 5.3.3 Implementation of PIC algorithm
  67. 5.3.4 Coulomb collisions with the MCC algorithm
  68. 5.3.5 Electron-neutral collisions
  69. 5.3.6 Recombination
  70. 5.3.7 Boundary conditions in dsmcPlasmaFoam
  71. 5.3.8 Numerical aspects
  72. 5.3.9 Global model implementation in OpenFOAM
  73. 5.4 Summary
  74. Chapter 6 Validation of dsmcPlasmaFoam
  75. 6.1 Maxwell solver
  76. 6.2 Lorentz solver
  77. 6.2.1 Solver behaviour without implementation of the Leapfrog algorithm
  78. 6.2.2 Solver behaviour with implemented Leapfrog algorithm
  79. 6.3 Particle and force weighting
  80. 6.4 Coulomb collisions
  81. 6.5 Electron-neutral collisions
  82. 6.6 Summary
  83. Chapter 7 Conclusion
  84. 7.2 Conclusion and outlook
  85. Appendix AMathematical Theorems
  86. A.1 Divergence theorem
  87. A.2 Reynolds transport theorem
  88. Appendix BSource Code dsmcPlasmaFoam
  89. B.1 Maxwell solver
  90. B.2 Lorentz solver
  91. B.3 Cumulative Coulomb collisions
  92. B.4 Electron-Neutral collisions
  93. B.5 Dynamic particle weighting
  94. Bibliography
  95. 7.1 Summary