Numerical modeling and simulation of particulate fouling on structured heat transfer surfaces using multiphase Eulerian-Lagrangian LES
eBook - PDF

Numerical modeling and simulation of particulate fouling on structured heat transfer surfaces using multiphase Eulerian-Lagrangian LES

,
  1. 178 pages
  2. English
  3. PDF
  4. Available on iOS & Android
eBook - PDF

Numerical modeling and simulation of particulate fouling on structured heat transfer surfaces using multiphase Eulerian-Lagrangian LES

,

About this book

Durch die gezielte Strukturierung von wĂ€rmeĂŒbertragenden OberflĂ€chen, wie beispielsweise durch Dellen oder Rippen, kann die örtliche Turbulenz und damit die thermische Durchmischung gesteigert werden. Dies kann die Effizienz von WĂ€rmeĂŒbertragern oder BauteilkĂŒhlsystemen erheblich erhöhen. Derartige OberflĂ€chenstrukturrierungen begĂŒnstigen jedoch das Partikelfouling, daher die Ablagerung suspendierter Partikel, wie z.B. Sand, Schlamm oder Korrosionsprodukte. Gegenstand dieser Arbeit ist die Entwicklung eines universellen, numerischen CFD-Verfahrens zur Vorhersage des partikulĂ€ren Foulings auf strukturierten OberflĂ€chen, speziell DellenoberflĂ€chen. Das entwickelte Verfahren basiert auf einer Kombination des Lagrangian-Particle-Trackings zur Beschreibung der dispersen Phase (Foulingpartikel), sowie rĂ€umlich und zeitlich aufgelöster Large-Eddy Simulation fĂŒr die Berechnung der kontinuierlichen Phasen (TrĂ€gerfluid). Dieses Vorgehen ermöglicht nicht nur die Auswertung der infolge der Partikelablagerungen verminderten thermo-hydraulischen Effizienz, sondern auch die Untersuchung der Wechselwirkungen zwischen turbulenten Strömungsstrukturen und dem partikulĂ€rem Fouling. Dadurch kann gezeigt werden, dass die Verwendung von sphĂ€rischen Dellen als OberflĂ€chenstrukturen nicht nur aus thermo-hydraulischer Sicht die optimale Wahl darstellt, sondern auch eine substantielle Verminderung des Partikelfoulings begĂŒnstigt.The application of structured heat transfer surfaces, such as dimples or ribs, increase the local turbulence and thus thermal mixing. This can improve the efficiency of heat exchangers or cooling systems significantly. However, structured surfaces are known to promote particulate fouling, hence the unwanted accumulation and deposition of suspended particles (e.g., silt, sludge or iron oxide).The scope of this work is the development of a universal numerical CFD method for the prediction of particulate fouling, especially on dimpled surfaces. The proposed approach is based on a combination of the Lagrangian point-particle tracking for the description of the disperse phase (fouling particles), and spatially and temporally resolved large-eddy simulations for the calculation of the continuous phase (carrier fluid). This approach allows not only the evaluation of the reduced thermo-hydraulic efficiency due to particle deposition, but also the investigation of the interaction between turbulent flow structures and the particulate fouling. It can be shown that the usage of spherical dimples as surface structures is not only the optimal choice from a thermo-hydraulic point of view, but also favors a substantial reduction of particulate fouling.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Numerical modeling and simulation of particulate fouling on structured heat transfer surfaces using multiphase Eulerian-Lagrangian LES by in PDF and/or ePUB format. We have over one million books available in our catalogue for you to explore.

Information

Year
2021
Print ISBN
9783736974197
eBook ISBN
9783736964198
Edition
1

Table of contents

  1. Abstract
  2. Preface
  3. List of Figures
  4. List of Tables
  5. Nomenclature
  6. 1 Introduction
  7. 1.1 Motivation
  8. 1.2 Fouling of heat transfer surfaces
  9. 1.3 Objectives and thesis outline
  10. 2 Description of the continuous phase
  11. 2.1 Governing equations of fluid motion
  12. 2.2 Turbulence in wall-bounded flows
  13. 2.3 Mathematical modeling of turbulent flows
  14. 2.4 Large-eddy simulation
  15. 3 Description of the dispersed phase
  16. 3.1 Characterization of dispersed multiphase flows
  17. 3.2 Numerical modeling of dispersed multiphase flows
  18. 3.3 Forces on particles
  19. 3.4 Phase coupling
  20. 3.5 Particle dispersion
  21. 3.6 Particle interactions
  22. 4 Numerical methodology
  23. 4.1 Spatial discretization
  24. 4.2 Temporal discretization
  25. 4.3 Pressure-velocity coupling
  26. 4.4 Boundary conditions
  27. 4.5 Numerical procedure of the applied Lagrangianparticle tracking
  28. 5 Modeling of particulate fouling onstructured heat transfer surfaces
  29. 5.1 Eulerian-Lagrangian approach
  30. 5.2 Multiscale modeling for the simulation of long-termfouling intervals
  31. 6 Validation
  32. 6.1 Particle-laden Taylor-Green vortex flow
  33. 6.2 Particle-laden turbulent backward-facing step flow
  34. 6.3 Particle-laden flow in a simplified combustionchamber
  35. 6.4 Particle-laden turbulent channel flow
  36. 7 Particulate fouling on dimpled heattransfer surfaces
  37. 7.1 Particulate fouling on a single spherical dimple
  38. 7.2 Particulate fouling on spherical dimples in astaggered arrangement
  39. 8 Conclusion
  40. Bibliography
  41. A Appendix
  42. A.1 High order statistical moments
  43. A.2 Unladen turbulent channel flow over a singlespherical dimple
  44. List of publications