Deep Learning Methods for Automotive Radar Signal Processing
eBook - PDF

Deep Learning Methods for Automotive Radar Signal Processing

,
  1. 136 pages
  2. English
  3. PDF
  4. Available on iOS & Android
eBook - PDF

Deep Learning Methods for Automotive Radar Signal Processing

,

About this book

Um autonomes Fahren zu ermƶglichen, müssen zukünftige Sensorsysteme nicht nur in der Lage sein, das Fahrumfeld zu erfassen, sondern auch semantische Informationen zu liefern. In dieser Arbeit werden Deep Learning Methoden, die die klassische Radarsignalverarbeitungskette verbessern oder sogar ersetzen sollen, entwickelt und im Hinblick auf das Automobilumfeld evaluiert. Für diesen Zweck werden hochmoderne Bilderkennungsalgorithmen auf die DomƤne der Radarsignale angepasst und zur Klassifizierung und Detektion verschiedener Verkehrsteilnehmer angewendet. For autonomous driving to become a reality, future sensor systems must be able to not only capture the vehicle's environment, but also to provide semantic information. In this work, deep learning methods, meant to enhance—or even replace—the classical radar signal processing chain, are developed and evaluated in the context of automotive applications. For this purpose, state of the art computer vision approaches are adapted and applied to radar signals in order to detect and classify different road users.

Tools to learn more effectively

Saving Books

Saving Books

Keyword Search

Keyword Search

Annotating Text

Annotating Text

Listen to it instead

Listen to it instead

Information

Year
2021
Print ISBN
9783736974623
eBook ISBN
9783736964624
Edition
1

Table of contents

  1. 1 Introduction
  2. 1.1 Goals and Contents of this Work
  3. 2 Radar Fundamentals
  4. 2.1 Continuous Wave Radar
  5. 2.2 Mono-Frequent Continuous Wave Radar
  6. 2.3 Linear Frequency Modulated Continuous WaveRadar
  7. 2.4 Chirp Sequence Frequency Modulated ContinuousWave Radar
  8. 2.5 Target Detection
  9. 2.6 Phased Arrays
  10. 2.7 Radar System Considerations
  11. 3 Machine Learning Fundamentals
  12. 3.1 Supervised Learning
  13. 3.2 Artificial Neural Networks
  14. 3.3 Training of Artificial Neural Networks
  15. 3.5 Loss Functions
  16. 3.6 Evaluation Metrics
  17. 4 Classification of Vulnerable RoadUsers
  18. 4.1 The Micro-Doppler Effect
  19. 4.2 Single Frame Vulnerable Road Users Classification
  20. 4.3 Joint Lidar and Radar Classification System
  21. 4.4 Concluding Remarks
  22. 5 Deep Learning Based Radar TargetDetection
  23. 5.1 Detection in Frequency Domain
  24. 5.2 Time Domain Detection
  25. 5.3 Concluding Remarks
  26. 6 Conclusion
  27. 6.1 Outlook
  28. Symbols
  29. Acronyms
  30. Bibliography
  31. Own Publications