
- 180 pages
- English
- PDF
- Available on iOS & Android
About this book
The increasing demand for new civil aircraft pushes aircraft manufacturers to develop innovative solutions that lead in particular to mass reductions. One way to achieve these kinds of improvements is the use of multidisciplinary analysis and optimization. In this sense the intention of this PhD thesis is to develop a multidisciplinary framework in order to quantify the impact of load alleviation function parameter changes on structural components like the wing and fuselage in terms of resulting mass changes. The developed iterative process chain covers the loads calculation including an active load alleviation system, a structural assessment of the wing and fuselage components and a dedicated feedback loop in order to update mass and stiffness properties of the loads calculation model. The study shows that significant mass reductions are achievable while on the other hand estimated mass penalties are irrelevant.Die stetig wachsende Nachfrage an zivilen Verkehrsflugzeugen drĂ€ngt Flugzeughersteller dazu, innovative Lösungen zu entwickeln. Diese Lösungen zielen speziell auf KostentrĂ€ger ab, wie z.B. eine Reduzierung der Flugzeuggesamtmasse. Ein Ansatz, um diese Art von Verbesserungen zu erreichen, ist die Nutzung von multidisziplinĂ€rer Analyse und Optimierung. In diesem Sinne besteht die Intention dieser Dissertation darin, eine multidisziplinĂ€re Analyseumgebung zu entwickeln, um den Einfluss von Parametervariationen des Lastabminderungssystems auf Strukturkomponenten wie den FlĂŒgel und Rumpf mit Bezug auf resultierende Ănderungen der Massen zu quantifizieren. Die hierbei entstehende iterative Prozesskette deckt Disziplinen ab, wie z.B. die Lastenberechnung samt Lastabminderungssystem sowie die strukturmechanische Auswertung der FlĂŒgel- sowie Rumpfkomponenten. Zudem ist eine RĂŒckkopplung zur BerĂŒcksichtigung von Massen- und SteifigkeitsĂ€nderungen im Lastenberechnungsmodell implementiert. Die Studie zeigt, dass eine signifikante Reduzierung der FlĂŒgelmasse möglich ist, wobei die geschĂ€tzte Massenzunahme am Rumpf vernachlĂ€ssigbar gering ist.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- List of Figures
- List of Tables
- List of symbols
- 1 Introduction
- 1.1 The need for a new simulation framework
- 1.2 State of the art
- 1.3 Objectives and thesis overview
- 2 Multidisciplinary analysis andoptimization framework
- 2.1 Developed process and mixture of competences
- 2.2 General process overview
- 3 Loads calculation process
- 3.1 Scope of computed load conditions
- 3.2 Loads calculation model
- 3.3 Electronic Flight Control System
- 4 Structural property optimization andmass penalty estimation
- 4.1 Modeling aspects of global FEM representation
- 4.2 Global FEM external loading
- 4.3 Linear static analysis and results management
- 4.4 Wing structural property optimization
- 4.5 Fuselage mass penalty estimation
- 5 Feedback loop
- 5.1 Starting approach
- 5.2 Main process steps of the feedback loop
- 5.3 Update of stiffness values - equivalent beamapproach
- 5.4 Update of mass values - grid point weight generator
- 5.5 Global convergence criteria
- 5.6 Impact of wing stiffness changes on the jig and flightshape
- 6 Design studies
- 6.1 Influence of the load alleviation function on thecalculated flight loads
- 6.2 First design study with reduced load case set
- 6.3 Design study with complete load case set
- 7 Summary, discussion of methods andresults, outlook
- 7.1 Summary
- 7.2 Discussion of methods
- 7.3 Discussion of results
- 7.4 Outlook
- Bibliography
- A Loads calculation and structuralassessment
- B Feedback loop - main process steps
- C Equivalent beam approach -validation
- D Equivalent beam approach -influence of skin and stringer
- E Grid Point Weight Generator - basics
- F Influence of the load alleviationfunction on the calculated flightloads
- G Structural baseline generation
- H Influence of load alleviation functionon structural components