
- English
- ePUB (mobile friendly)
- Available on iOS & Android
About this book
State-of-the-art algorithmic deep learning and tensoring techniques for financial institutions
The computational demand of risk calculations in financial institutions has ballooned and shows no sign of stopping. It is no longer viable to simply add more computing power to deal with this increased demand. The solution? Algorithmic solutions based on deep learning and Chebyshev tensors represent a practical way to reduce costs while simultaneously increasing risk calculation capabilities. Machine Learning for Risk Calculations: A Practitioner's View provides an in-depth review of a number of algorithmic solutions and demonstrates how they can be used to overcome the massive computational burden of risk calculations in financial institutions.
This book will get you started by reviewing fundamental techniques, including deep learning and Chebyshev tensors. You'll then discover algorithmic tools that, in combination with the fundamentals, deliver actual solutions to the real problems financial institutions encounter on a regular basis. Numerical tests and examples demonstrate how these solutions can be applied to practical problems, including XVA and Counterparty Credit Risk, IMM capital, PFE, VaR, FRTB, Dynamic Initial Margin, pricing function calibration, volatility surface parametrisation, portfolio optimisation and others. Finally, you'll uncover the benefits these techniques provide, the practicalities of implementing them, and the software which can be used.
- Review the fundamentals of deep learning and Chebyshev tensors
- Discover pioneering algorithmic techniques that can create new opportunities in complex risk calculation
- Learn how to apply the solutions to a wide range of real-life risk calculations.
- Download sample code used in the book, so you can follow along and experiment with your own calculations
- Realize improved risk management whilst overcoming the burden of limited computational power
Quants, IT professionals, and financial risk managers will benefit from this practitioner-oriented approach to state-of-the-art risk calculation.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Table of Contents
- Title Page
- Copyright
- Dedication
- Acknowledgements
- Foreword
- Motivation and aim of this booknotesSet
- PART One: Fundamental Approximation Methods
- PART Two: The toolkit โ plugging in approximation methods
- PART Three: Hybrid solutions โ approximation methods and the toolkit
- PART Four: Applications
- Appendix A: Families of orthogonal polynomials
- Appendix B: Exponential convergence of Chebyshev Tensors
- Appendix C: Chebyshev Splines on functions with no singularity points
- Appendix D: Computational savings details for CCR
- Appendix E: Computational savings details for dynamic sensitivities
- Appendix F: Dynamic sensitivities on the market space
- Appendix G: Dynamic sensitivities and IM via Jacobian Projection technique
- Appendix H: MVA optimisation โ further computational enhancement
- Bibliography
- Index
- End User License Agreement