
eBook - ePub
Aggregation-Induced Emission
Applications in Biosensing, Bioimaging and Biomedicine â Volume 1
- 325 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
eBook - ePub
Aggregation-Induced Emission
Applications in Biosensing, Bioimaging and Biomedicine â Volume 1
About this book
This two volume set introduces the up-to-date high-tech applications of Aggregation-Induced Emission (AIE) luminogens mainly in the areas of biosensing, bioimaging, and biomedicine. The 1st volume covers the applications of AIE materials in biosensing and bioimaging, including the technological utilizations in ionic/biomolecular sensing, bacterial imaging, cell imaging, intracellular microenvironment analysis, advanced optical imaging and multimodality, etc. It is an essential reference for materials scientists, chemists, physicists and biological chemists.
Frequently asked questions
Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, weâve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere â even offline. Perfect for commutes or when youâre on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Aggregation-Induced Emission by Xinggui Gu, Ben Zhong Tang, Ben Zhong Tang,Xinggui Gu, Ben Zhong Tang, Xinggui Gu in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Biochemistry. We have over one million books available in our catalogue for you to explore.
Information
Chapter 1 Introduction
Engui Zhao
School of Science, Harbin Institute of Technology, Shenzhen, HIT Campus of University Town, Shenzhen, China
Hui Li
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
Xinggui Gu
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
Ben Zhong Tang
Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
As human living standard improves, healthcare and medicine have drawn increasing attention from both scientists and ordinary people, which promote the rapid development of advanced diagnostic and therapeutic techniques. Fluorescence, with the advantages of real-time imaging, high sensitivity, superb spatial and temporal resolution, and simple operation, has been employed for the development of novel diagnostic and therapeutic techniques [1, 2]. Most conventional fluorescent materials suffer from the aggregation-caused quenching (ACQ) effect, with bright emission in their dilute solutions, but weak or completely quenched fluorescence at high concentrations or in the aggregated state [3]. To avoid ACQ from taking effect, conventional fluorescent materials are mostly utilized at low concentrations, which introduce the problems of easy photobleaching, low imaging contrast, and unsatisfying therapeutic performance, and greatly hamper their widespread application in the biomedical field.
Materials with aggregation-induced emission (AIE) characteristics perfectly overcome these problems caused by the ACQ effect [3]. Since the concept of âaggregation-induced emissionâ was first coined by Tang in 2001 [4], investigations on AIE have been a hot topic in various research fields. Luminogens, with AIE attributes (AIEgens), exhibit no or weak emission in solutions, and intense fluorescence in the aggregated state. Thus, they break the fetters that traditional luminescent materials with ACQ properties encounter, solve the problems that bright emissions of luminogens in dilute solutions face such as weakened or quenched when the luminogens are concentrated or aggregated, and extend the real-world application of fluorescent materials in energy, health, and environment [5]. The past two decades have witnessed the blooming development of AIEgens in biological science and biomedical applications due to their unique merits of anti-quenching, high brightness, excellent photostability, fluorescence turn-on fashion, and large Stokes shift [6, 7, 8, 9]. These enthusiastic research efforts have resulted in many novel AIEgens with varied biomedical applications, which can be classified into three aspects of biosensor [10], bioimaging [11, 12] and biomedicine [13].
1.1 AIEgen-based biosensor
Many diseases are accompanied with abnormal activities and concentrations of biomarkers or biomolecules, such as nucleic acids [14], enzymes [15], metal ions [16] and bio-thiols [17]. Fluorescent biosensors are powerful analytical tools for these biological targets. Development of sensitive and selective fluorescent biosensors is of great importance, which may contribute to the early diagnosis and effective treatment of diseases. Thus, a large variety of luminogens, such as fluorescent proteins, organic dyes, and quantum dots [18, 19, 20], have been developed and utilized for sensing the quantity or activity of biological targets. In sensory applications, changes in fluorescence intensity, wavelength, or lifetime of the sensors, upon interacting with targets are the key outputs. Conventional luminogens with their rigid and coplanar molecular structures are emissive in solutions, which may result in high background fluorescence with low sensitivity, and add to the difficulty for sensor designs. In contrast, the novel AIEgens exhibit great practical benefits in sensory applications, which permit the use of dye solutions at any concentration for bioassays and enable the development of fluorescence ââturn-onâ biosensors by taking advantage of luminogen aggregation processes [21]. The fluorescence ââturn-onâ feature of AIE biosensors offers higher sensitivity and better accuracy over ACQ biosensors. Thus, a lot of outstanding AIE-active biosensors have been constructed for the detection of biomolecules and biomacromolecules, such as amino acid [22], glucose [23], ATP [24], nucleic acid [25], protease [26], and disease-related proteins [27], with the features of high sensitivity, fast response, high signal-to-noise ratio, and extremely low background fluorescence.
AIEgen-based fluorescent biosensors are commonly composed of AIE-active fluorophores and functional units. Tetraphenylethene (TPE) and tetraphenylsilole (TPS), and their modified derivatives account for a substantial portion of the fluorophores in AIE-active biosensors [28]. In sensors, the functional units play an important role in interacting with biological targets [29, 30]. Biomacromolecules, such as nucleic acids and proteins, possess excellent biocompatibility and outstanding specificity, and are frequently used as the functional units [31]. The combination of biomacromolecules and AIEgens not only endows the biosensors with high specificity but also improves the biological activity and water solubility of the probe for accurate and efficient biosensing. In the chapter, Modular Nucleic Acid-Functionalized AIEgen Probes for Biosensing Applications, we will introduce the design mechanism of modular nucleic acid-functionalized AIEgen probes (MNAPs) and their biosensing applications. In the chapter, Peptide-AIEgen Conjugates for Biomedical Diagnosis and Bioimaging, we will discuss the design of AIEgens with various kinds of peptide modifications and their applications in biomedical diagnosis and bioimaging.
AIE-active sensors can also be constructed by taking advantages of their state transition process â when interacting with specific targets, the fluorescence of AIE-active sensors can be turned on upon switching AIEgens from the dispersive state to the aggregated state. Another widely used strategy for sensing with AIEgens is based on exploiting the reactions between the functional groups and the targets to realize the fluorescence turn-on process. In the chapter, The Application of Click Chemistry in the Design of Aggregation-Induced Emission Luminogens for Activity-Based Sensing, we will expound AIEgen-active sensors based on the mechanism of click chemi...
Table of contents
- Title Page
- Copyright
- Contents
- Chapter 1âIntroduction
- Chapter 2âModular nucleic acid-functionalized AIEgen probes for biosensing applications
- Chapter 3âPeptideâAIEgen conjugates for biomedical diagnosis and bioimaging
- Chapter 4âThe application of click chemistry in the design of aggregation-induced emission luminogens for activity-based sensing
- Chapter 5âPoint-of-care in vitro diagnostics devices based on aggregation-induced emission biosensors: current situation and future prospective
- Chapter 6âAIEgens for organelles imaging and biological process monitoring
- Chapter 7âAIE-active 1,3-butadiene-based biosensors and bioimagings
- Chapter 8âAIEgens for intracellular microenvironment analysis
- Chapter 9âEngineering the bioprobes with AIE properties to study tumor hypoxia
- Chapter 10âAIE probes for bacterial detection and antibacterial applications
- Chapter 11âAIE-based systems for photoactivatable imaging, delivery, and therapy
- Index