Transformers for Natural Language Processing
eBook - ePub

Transformers for Natural Language Processing

  1. 564 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Transformers for Natural Language Processing

About this book

OpenAI's GPT-3, ChatGPT, GPT-4 and Hugging Face transformers for language tasks in one book. Get a taste of the future of transformers, including computer vision tasks and code writing and assistance.Purchase of the print or Kindle book includes a free eBook in PDF format

Key Features

  • Improve your productivity with OpenAI's ChatGPT and GPT-4 from prompt engineering to creating and analyzing machine learning models
  • Pretrain a BERT-based model from scratch using Hugging Face
  • Fine-tune powerful transformer models, including OpenAI's GPT-3, to learn the logic of your data

Book Description

Transformers are...well...transforming the world of AI. There are many platforms and models out there, but which ones best suit your needs?Transformers for Natural Language Processing, 2nd Edition, guides you through the world of transformers, highlighting the strengths of different models and platforms, while teaching you the problem-solving skills you need to tackle model weaknesses.You'll use Hugging Face to pretrain a RoBERTa model from scratch, from building the dataset to defining the data collator to training the model.If you're looking to fine-tune a pretrained model, including GPT-3, then Transformers for Natural Language Processing, 2nd Edition, shows you how with step-by-step guides.The book investigates machine translations, speech-to-text, text-to-speech, question-answering, and many more NLP tasks. It provides techniques to solve hard language problems and may even help with fake news anxiety (read chapter 13 for more details).You'll see how cutting-edge platforms, such as OpenAI, have taken transformers beyond language into computer vision tasks and code creation using DALL-E 2, ChatGPT, and GPT-4.By the end of this book, you'll know how transformers work and how to implement them and resolve issues like an AI detective.

What you will learn

  • Discover new techniques to investigate complex language problems
  • Compare and contrast the results of GPT-3 against T5, GPT-2, and BERT-based transformers
  • Carry out sentiment analysis, text summarization, casual speech analysis, machine translations, and more using TensorFlow, PyTorch, and GPT-3
  • Find out how ViT and CLIP label images (including blurry ones!) and create images from a sentence using DALL-E
  • Learn the mechanics of advanced prompt engineering for ChatGPT and GPT-4

Who this book is for

If you want to learn about and apply transformers to your natural language (and image) data, this book is for you.You'll need a good understanding of Python and deep learning and a basic understanding of NLP to benefit most from this book. Many platforms covered in this book provide interactive user interfaces, which allow readers with a general interest in NLP and AI to follow several chapters. And don't worry if you get stuck or have questions; this book gives you direct access to our AI/ML community to help guide you on your transformers journey!

]]>

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere β€” even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Transformers for Natural Language Processing by Denis Rothman,Antonio Gulli in PDF and/or ePUB format, as well as other popular books in Informatica & Intelligenza artificiale (IA) e semantica. We have over one million books available in our catalogue for you to explore.

Index

Symbols
345M-parameter GPT-2 model
downloading 475, 476
A
accuracy score 125
Allen Institute for AI
reference link 257
AllenNLP 343
URL 343
Amazon Web Services (AWS) 1, 12, 392
artificial intelligence, properties
computing power 6
data 5
model architecture 5
prompt engineering 6
attention heads 459
attention masks
creating 76
Automated Machine Learning (AutoML) 120
automatic question generation 303, 304
B
BERT-based transformer
architecture 258
basic samples 261-267
difficult samples 267-273
running 258
SRL experiments 259, 260
BERT-base multilingual model 324, 325
BERT model
architecture 62
attention masks, creating 76
batch size, selecting 77
BERT tokenizer, activating 75
BERT tokens, adding 75
configuration 78, 80
CUDA, specifying as device for torch 72
data, converting into torch tensors 77
data, processing 76
dataset, loading 73-75
data, splitting into training set 76
data, splitting into validation set 76
encoder stack 62-65
fine-tuning 68-70
hardware constraints 71
holdout dataset, used for evaluating 86, 87
holdout dataset, used for predicting 86, 87
Hugging Face BERT uncased base model, loading 80-82
Hugging Face PyTorch interface, installing 71
hyperparameters for training loop 83
iterator, creating 77
key features 68
label lists, creating 75
Matthews Correlation...

Table of contents

  1. Preface
  2. What are Transformers?
  3. Getting Started with the Architecture of the Transformer Model
  4. Fine-Tuning BERT Models
  5. Pretraining a RoBERTa Model from Scratch
  6. Downstream NLP Tasks with Transformers
  7. Machine Translation with the Transformer
  8. The Rise of Suprahuman Transformers with GPT-3 Engines
  9. Applying Transformers to Legal and Financial Documents for AI Text Summarization
  10. Matching Tokenizers and Datasets
  11. Semantic Role Labeling with BERT-Based Transformers
  12. Let Your Data Do the Talking: Story, Questions, and Answers
  13. Detecting Customer Emotions to Make Predictions
  14. Analyzing Fake News with Transformers
  15. Interpreting Black Box Transformer Models
  16. From NLP to Task-Agnostic Transformer Models
  17. The Emergence of Transformer-Driven Copilots
  18. Appendix I β€” Terminology of Transformer Models
  19. Appendix II β€” Hardware Constraints for Transformer Models
  20. Appendix III β€” Generic Text Completion with GPT-2
  21. Appendix IV β€” Custom Text Completion with GPT-2
  22. Appendix V β€” Answers to the Questions
  23. Other Books You May Enjoy
  24. Index