Computational Geomechanics
eBook - PDF

Computational Geomechanics

Theory and Applications

  1. English
  2. PDF
  3. Available on iOS & Android
eBook - PDF

About this book

COMPUTATIONAL GEOMECHANICS

The new edition of the first book to cover the computational dynamic aspects of geomechanics, now including more practical applications and up-to-date coverage of current research in the field

Advances in computational geomechanics have dramatically improved understanding of the behavior of soils and the ability of engineers to design increasingly sophisticated constructions in the ground. When Professor Olek Zienkiewicz began the application of numerical approaches to solid dynamics at Swansea University, it became evident that realistic prediction of the behavior of soil masses could only be achieved if the total stress approaches were abandoned. Computational Geomechanics introduces the theory and application of Zienkiewicz's computational approaches that remain the basis for work in the area of saturated and unsaturated soil to this day.

Written by past students and colleagues of Professor Zienkiewicz, this extended Second Edition provides formulations for a broader range of problems, including failure load under static loading, saturated and unsaturated consolidation, hydraulic fracturing, and liquefaction of soil under earthquake loading. The internationally-recognized team of authors incorporates current computer technologies and new developments in the field, particularly in the area of partial saturation, as they guide readers on how to properly apply the formulation in their work. This one-of-a-kind volume:

  • Explains the Biot-Zienkiewicz formulation for saturated and unsaturated soil
  • Covers multiple applications to static and dynamic problems for saturated and unsaturated soil in areas such as earthquake engineering and fracturing of soils and rocks
  • Features a completely new chapter on fast catastrophic landslides using depth integrated equations and smoothed particle hydrodynamics with applications
  • Presents the theory of porous media in the saturated and unsaturated states to establish the foundation of the problem of soil mechanics
  • Provides a quantitative description of soil behavior including simple plasticity models, generalized plasticity, and critical state soil mechanics
  • Includes numerous questions, problems, hands-on experiments, applications to other situations, and example code for GeHoMadrid

Computational Geomechanics: Theory and Applications, Second Edition is an ideal textbook for specialist and general geotechnical postgraduate courses, and a must-have reference for researchers in geomechanics and geotechnical engineering, for software developers and users of geotechnical finite element software, and for geotechnical analysts and engineers making use of the numerical results obtained from the Biot-Zienkiewicz formulation.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Computational Geomechanics by Andrew H. C. Chan,Manuel Pastor,Bernhard A. Schrefler,Tadahiko Shiomi,Olgierd C. Zienkiewicz in PDF and/or ePUB format, as well as other popular books in Physical Sciences & Mechanics. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Wiley
Year
2022
Print ISBN
9781118350478
eBook ISBN
9781118535318
Edition
2
Subtopic
Mechanics

Table of contents

  1. Cover
  2. Title Page
  3. Copyright Page
  4. Contents
  5. Preface
  6. Chapter 1 Introduction and the Concept of Effective Stress
  7. Chapter 2 Equations Governing the Dynamic, Soil–Pore Fluid, Interaction
  8. Chapter 3 Finite Element Discretization and Solution of the Governing Equations
  9. Chapter 4 Constitutive Relations: Plasticity
  10. Chapter 5 Special Aspects of Analysis and Formulation: Radiation Boundaries, Adaptive Finite Element Requirement, and Incompressible Behavior
  11. Chapter 6 Examples for Static, Consolidation, and Hydraulic Fracturing Problems
  12. Chapter 7 Validation of Prediction by Centrifuge
  13. Chapter 8 Applications to Unsaturated Problems
  14. Chapter 9 Prediction Application and Back Analysis to Earthquake Engineering: Basic Concepts, Seismic Input, Frequency, and Time Domain Analysis
  15. Chapter 10 Beyond Failure: Modeling of Fluidized Geomaterials: Application to Fast Catastrophic Landslides
  16. Index
  17. EULA