
eBook - ePub
Synthetic Applications
- 454 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
eBook - ePub
Synthetic Applications
About this book
Magnetic nanocatalysts are becoming an important tool for greener catalytic processes in chemical transformations in view of the ease of their removal from a reaction medium. This book explores assorted magnetic nanocatalysts, their deployment in synthesis, chemical transformation and their recovery and reuse. Various thematic topics embodied include magnetic nanocatalysts for S-S bond formation, N-heterocycle formation, C-heteroatom bond formation, silica-supported catalysts, multicomponent reactions, including their recyclability; another available volume emphasizes the utility of magnetic nanocatalysts in industrial appliances.
Tools to learn more effectively

Saving Books

Keyword Search

Annotating Text

Listen to it instead
Information
Chapter 1 Magnetic metal nanoparticle-catalyzed carbon-heteroatom bond formation and synthesis of related heterocycles
Brindaban C. Ranu *
Laksmikanta Adak
Indian Institute of Engineering Science and Technology, Howrah, India
Nirmalya Mukherjee
School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, Kolkata, India
Tubai Ghosh
Jadavpur University, Department of Chemistry, Kolkata, India
Acknowledgments: B. C. Ranu gratefully acknowledges the support of the Indian National Science Academy, New Delhi for offering him the position of INSA Honorary Scientist. L. Adak thanks SERB, DST, Government of India (Project: SRG/2020/001350) and the WBDST-BT for their support via government order [Memo No: 1854(Sanc.)/ST/P/S&T/15G-7/2019]. T. Ghosh thanks the UGC-DSKPDF (UGC Award Letter No. & Date: F.4-2/2006 (BSR)/CH/19-20/0088; 24.01.2020) for his postdoctoral fellowship.
1.1 Introduction
The past decade saw an exponential growth in the area of nanoscience and nanotechnology. One of the most interesting features of nanotechnology is its useful applications in various fields. The discovery and easy accessibility of nanoparticles (NPs) of different shapes, sizes, and compositions have prompted investigations on their applications in catalysis. The ânanoâ in nanocatalysis refers to the size of the particles in the nanoscale range. As nanoparticles have a high surface-to-volume ratio, compared to bulk materials, they offer a viable alternative to conventional catalysts [1, 2]. Recent reports have showed their remarkable performance as catalysts, in terms of reactivity, selectivity, and product yields [3, 4, 5, 6, 7, 8]. Nanocatalysts offer numerous advantages over convention catalyst systems, but isolation and recovery of these small nanocatalysts from the reaction mixture is tedious. The development of an efficient, and industrially and environmentally acceptable catalyst constitutes one of the important goals towards sustainability and economic growth. To achieve this goal, the use of magnetic nanoparticles has received much interest as they are easily separable and reusable. Thus, magnetic nanoparticles have appeared as a practical alternative. Their magnetic and insoluble properties offer easy and efficient separation of the catalyst from the reaction mixture â by the application of an external magnet without the requirement of filtration, centrifugation, or other complex workup.
The carbon-heteroatom bond formation constitutes the backbone of the synthesis of heterocycles. Thus, the carbon-heteroatom bond formation at a high efficiency is of great interest. The formation of the transition metal catalyzed carbon-heteroatom bond by cross-coupling is an efficient tool and has received wide application in the synthesis of pharmaceutically active heterocyclic compounds, drugs, and natural products [9, 10, 11, 12, 13, 14, 15]. In general, as the use of metal nanoparticles provides more advantages over parent metals in catalysis, more investigations are now directed towards the application of magnetic nanoparticles for various fundamental reactions [16, 17, 18, 19, 20, 21, 22]. This chapter will highlight the applications of magnetic metal nanoparticles in the carbon-heteroatom bond formation and the related synthesis of heterocycles.
1.2 Carbon-nitrogen bond formation and the synthesis of related heterocycles
Carbon-nitrogen (CâN) bond formation is one of the useful processes in organic synthesis, as the consequent amines are broadly used as intermediates or precursors in the preparation of fine chemicals, pharmaceuticals, agrochemicals, and natural products. The developments in the formation of carbon-nitrogen bonds and in the synthesis of related heterocycles by magnetic metal nanoparticles as catalysts have been described below.
1.2.1 CâN bond formation via cross-coupling reactions
MartĂnez et al. [23] reported the reaction of aromatic amines with substituted benzylic alcohols to produce the respective benzyl imines, in the presence of magnetite (Figure 1.1). The reaction involved 20 mol% of magnetite (Fe3O4) and two equivalents of t-BuOK (potassium t-butoxide) as a base in 1,4-dioxane at 90 °C for a period of 7 days. Diversely substituted anilines (1) reacted with various benzyl alcohols (2) under standardized reaction conditions and the corresponding N-substituted benzylated derivatives (3) were obtained at excellent yields. Benzylic alcohols were used as electrophiles here. The best result was observed when less nucleophilic 3-chloroaniline was used, and the use of more nucleophilic aniline derivatives led to lower yields of the corresponding products. No reaction was observed with aliphatic amine or aliphatic alcohols, which clearly indicates the preference of the catalyst. Using a simple external magnet, the catalyst was recovered and reused eight times without any loss of significant catalytic activity.

Figure 1.1: Fe3O4-catalyzed N-monoalkylation of aromatic...
Table of contents
- Title Page
- Copyright
- Contents
- Dedicated to Sant Baba Iqbal Singh Ji, Founder Chancellor, Akal University
- Foreword
- About Professor C.N.R. Rao
- Chapter 1âMagnetic metal nanoparticle-catalyzed carbon-heteroatom bond formation and synthesis of related heterocycles
- Chapter 2âMagnetic nanocatalysts in disulfide synthesis
- Chapter 3âHybrid magnetic nanocatalysts for organic synthesis
- Chapter 4âMagnetic nanostructured catalysts for reduction of nitroaromatics
- Chapter 5âApplications of CuFe2O4 magnetic nanoparticles in organic synthesis
- Chapter 6âMagnetic nanoparticle catalysis: a potential platform for the fabrication of CâC bond generation and oxidation reaction to achieve important structural motifs
- Chapter 7âMagnetic nanocomposite-catalyzed Suzuki cross-coupling reactions
- Chapter 8âNi nanoparticles-mediated synthesis of various heterocycles
- Chapter 9âSulfonic acid functionalized magnetic nanocatalysts in organic synthesis
- Chapter 10âSilica-coated magnetic nanocatalysts as efficient green catalysts for organic synthesis
- Chapter 11âMulticomponent synthesis of biologically promising pyrans and pyran annulated heterocycles using magnetically recoverable nanocatalysts
- Author list
- Index
Frequently asked questions
Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn how to download books offline
Perlego offers two plans: Essential and Complete
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 990+ topics, weâve got you covered! Learn about our mission
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more about Read Aloud
Yes! You can use the Perlego app on both iOS and Android devices to read anytime, anywhere â even offline. Perfect for commutes or when youâre on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app
Yes, you can access Synthetic Applications by Rajender S. Varma, Bubun Banerjee, Rajender S. Varma,Bubun Banerjee in PDF and/or ePUB format, as well as other popular books in Physical Sciences & Environmental Science. We have over one million books available in our catalogue for you to explore.