From single large instruments such as particle accelerators , telescopes , neutron reactors, synchrotron radiation sources or free-electron lasers , to networks, distributed research infrastructures or cloud-based efforts, Big Science projects have become crucial and vital elements of the European scientific landscapes since the second half of the twentieth century. These projects are precious but also crucial resources with regard to the importance of their performances for the advancement of science together with the observation that their efforts are hardly duplicated at any other place in Europe or elsewhere. The political expectations that are nowadays placed on publicly funded Big Science projects are high namely that they should considerably contribute to the solving of urgent societal challenges, such as climate change, health or energy security.1
Several collaborative and single-sited Big Science facilities with different scientific purposes were established in Europe over the course of the last decades. The creation of CERN (European Organization for Nuclear Research) in 1954, ESRO (European Space Research Organisation) in 1962, ELDO (European Space Vehicle Launcher Development) in 1964, ILL (Institut Laue-Langevin) in 1966, EMBL (European Molecular Biology Laboratory) in 1973, ESRF (European Synchrotron Radiation Facility) and ETW (European Transonic Wind Tunnel) both in 1988 and European XFEL (European X-ray Free-Electron Laser) in 2009 are only some of the many projects of this kind. Intergovernmental agreements by state groups of varying size, negotiated among ministerial and governmental representatives, have become, and remain, the widespread modus operandi of these Big Science projects in Europe. Based on loosely structured ad-hoc processes that preceded their establishment, every project became, for better or worse, a unique piece within the scientific and political landscapes of Europe.
This book investigates the political history of Big Science in Europe characterised by the founding histories of two collaborative, single-sited facilities, namely the ESRF (European Synchrotron Radiation Facility) in Grenoble, France and the European XFEL (X-ray Free-Electron Laser) in Schenefeld, Germany. The ESRF was (and remains) the first collaborative synchrotron radiation facility in Europe. It was established in 1988 through intergovernmental agreement among eleven European countries that were Belgium, Denmark, Finland, France, Germany,2 Italy, Norway, Spain, Sweden, Switzerland and the United Kingdom. Based on recommendations from leading European scientists to set up a collaborative effort on research with synchrotron radiation, the project developed under the auspices of the ESF (European Science Foundation) and in the context of intergovernmental negotiations mainly between France, Germany and the United Kingdom. The convention was signed in 1988, and the ESRF became operational in 1994.
The European XFEL is a free-electron laser that operates in the hard X-ray wavelength regime. The project is based on intergovernmental agreement that was signed in 2009 by twelve countries: Denmark, France, Germany, Greece, Hungary, Italy, Poland, Russia, Slovakia, Spain, Sweden and Switzerland. The founding history of the European XFEL project is closely connected to the activities of the international TESLA (Tera-Electronvolt Energy Superconducting Linear Accelerator) collaboration located at the German national research centre DESY (Deutsches Elektronen-Synchrotron). In the early 1990s, the TESLA collaboration had proposed the construction of a linear collider for research in particle physics. For various reasons which are to be explored in the context of this book, a free-electron laser was added several years later to the initial project proposal. In 2003, the German government decided to realise the free-electron laser, but to put a halt to the linear collider project. While the linear collider project was hence abandoned, the convention for the free-electron laser project was signed in 2009. The facility opened to external users in 2017.
The ESRF and the European XFEL produce intense and brilliant light: synchrotron radiation. This is a specific kind of electromagnetic radiation that was first discovered in the late 1940s at a synchrotron, a circular-shaped particle accelerator, from which this name derives.3 Synchrotron radiation became an increasingly demanded experimental resource for multidisciplinary investigations into materials and living matter, as well as the development of drugs or smart materials. Today, nearly all research with synchrotron radiation is done at storage rings (another kind of circular-shaped particle accelerator ) and free-electron lasers , which are based on a linear accelerator complex (see Chap. 3). Nevertheless, the (misleading) notion of synchrotron radiation has stuck among scientists, administrators, as well as in the public mind, and is also used throughout this book. An alternative way of framing research with synchrotron radiation is to consider it as a part of the field of photon science, which is, very simply speaking, science with light. The ESRF and the European XFEL are so-called user facilities or service facilities that provide synchrotron radiation as an experimental resource to external users. The facilities are publicly funded, and access for fundamental, non-proprietary research groups to the ESRF and the European XFEL is granted on the basis of a scientific peer-review process. Both facilities also offer the possibility to buy experimental time by commercial companies and similar industry-related organisations to carry out proprietary research.
The main motivation of this book is to explore the founding histories of the ESRF and the European XFEL, and to understand how these two Big Science collaborations came into being in the late twentieth and early twenty-first centuries. What were the main motivations to initiate and join these two collaborative Big Science projects? How were national research policy strategies and scientific needs set and negotiated? How did one compromise on site, financial share and legal framework? These questions are fundamental not only to understand the history and politics of the ESRF and the European XFEL but also to gain a nuanced understanding of how their founding histories relate and connect to the broader patterns and dynamics of European politics, European integration and international relations.
More than three decades after the convention of the ESRF was signed in 1988, and more than one decade after the signing of the convention of the European XFEL in 2009, the political processes that preceded both events remain largely unexplored events in the history of science and technology and the history of Europe.4 Based on largely unexplored material from the French national archives (Archives Nationales de France), the German national archive (Bundesarchiv) and the internal archives of DESY and the ESRF, as well as through the analysis of specific scientific and political case-related dynamics, this book hopes to contribute to an improved understanding of the history and politics of Big Science in Europe.
This book partakes in a generational shift that is currently taking place in the study of Big Science. Current research efforts have started to broaden the disciplinary angles of the study of Big Science (such as political science5 or innovation studies6) and to explore various new thematic fields (such as research infrastructures for the humanities7 or evolving EU policy around Big Science projects8). But they also expand the (historical) study of Big Science well into the twenty-first century.9 Scholarly research began to frame a narrative of change and continuity in the politics and organisation of Big Science projects in Europe, arguing that politics, economy, scientific programmes and organisation of Big Science profoundly changed throughout the late twentieth century and the early twenty-first century, while key principles and basic infrastructures largely remained in place.10 Such a perspective does not only highlight how the history of Big Science considerably refrains and mirrors the historical development of European politics and policymaking.11 But it also points to changes in the science policy rationales, most notably in the post-Cold War, attributing a more strategic role to knowledge, science and research for and within economy and society.12 This also translated into a re-direction of funding priorities and rationales for the support of and commitment to Big Science. Such and similar emerging perspectives on the po...