
- English
- ePUB (mobile friendly)
- Available on iOS & Android
About this book
This book provides a broad introduction to computational aspects of Singular Spectrum Analysis (SSA) which is a non-parametric technique and requires no prior assumptions such as stationarity, normality or linearity of the series. This book is unique as it not only details the theoretical aspects underlying SSA, but also provides a comprehensive guide enabling the user to apply the theory in practice using the R software. Further, it provides the user with step- by- step coding and guidance for the practical application of the SSA technique to analyze their time series databases using R. The first two chapters present basic notions of univariate and multivariate SSA and their implementations in R environment. The next chapters discuss the applications of SSA to change point detection, missing-data imputation, smoothing and filtering. This book is appropriate for researchers, upper level students (masters level and beyond) and practitioners wishing to revive their knowledge of times series analysis or to quickly learn about the main mechanisms of SSA.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
1. Univariate Singular Spectrum Analysis
Abstract
Keywords
Univariate SSAWindow lengthSingular valuesReconstructionForecastingTable of contents
- Cover
- Front Matter
- 1.Ā Univariate Singular Spectrum Analysis
- 2.Ā Multivariate Singular Spectrum Analysis
- 3.Ā Applications of Singular Spectrum Analysis
- 4.Ā More on Filtering and Forecasting by SSA
- Back Matter