Principles of Glacier Mechanics
About this book
The third edition of this successful textbook will supply advanced undergraduate and graduate students with the tools they need to understand modern glaciological research. Practicing glacial geologists and glaciologists will also find the volume useful as a reference book. Since the second edition, three-quarters of the chapters have been updated, and two new chapters have been added. Included in this edition are noteworthy new contributions to our understanding of important concepts, with over 170 references to papers published since the second edition went to press. The book develops concepts from the bottom up: a working knowledge of calculus is assumed, but beyond that, the important physical concepts are developed from elementary principles. Emphasis is placed on connections between modern research in glaciology and the origin of features of glacial landscapes. Student exercises are included.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Half-title
- Reviews
- Title page
- Copyright information
- Dedication
- Contents
- Preface to the third edition
- Preface to the second edition
- Preface to the first edition
- Physical constants relevant to ice
- Derived SI units and conversion factors
- 1 Why study glaciers?
- 2 Some basic concepts
- 3 Mass balance
- 4 Flow and fracture of a crystalline material
- 5 The velocity field in a glacier
- 6 Temperature distribution in polar ice sheets
- 7 The coupling between a glacier and its bed
- 8 Water flow in and under glaciers: Geomorphic implications
- 9 Stress and deformation
- 10 Stress and velocity distribution in an idealized glacier
- 11 Numerical modeling
- 12 Applications of stress and deformation principles to classical problems
- 13 Ice streams and ice shelves
- 14 Finite strain and the origin of foliation
- 15 Response of glaciers to climate change
- 16 Ice core studies
- Problems
- References
- Index
