
- English
- PDF
- Available on iOS & Android
Symmetry, Phase Modulation and Nonlinear Waves
About this book
Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Half-title page
- Series page
- Title page
- Copyright page
- Dedication
- Contents
- 1 Introduction
- 2 Hamiltonian ODEs and Relative Equilibria
- 3 Modulation of Relative Equilibria
- 4 Revised Modulation Near a Singularity
- 5 Whitham Modulation Theory – the Lagrangian Viewpoint
- 6 From Lagrangians to Multisymplectic PDEs
- 7 Whitham Modulation Theory – the Multisymplectic Viewpoint
- 8 Phase Modulation and the KdV Equation
- 9 Classical View of KdV in Shallow Water
- 10 Phase Modulation of Uniform Flows and KdV
- 11 Generic Whitham Modulation Theory in 2+1
- 12 Phase Modulation in 2+1 and the KP Equation
- 13 Shallow Water Hydrodynamics and KP
- 14 Modulation of Three-Dimensional Water Waves
- 15 Modulation and Planforms
- 16 Validity of Lagrangian-based Modulation Equations
- 17 Non-conservative PDEs and Modulation
- 18 Phase Modulation: Extensions and Generalizations
- Appendix A Supporting Calculations: Fourth- and Fifth-Order Terms
- Appendix B Derivatives of a Family of Relative Equilibria
- Appendix C B[sub(k)] and the Spectral Problem
- Appendix D Reducing Dispersive Conservation Laws to KdV
- Appendix E Advanced Topics in Multisymplecticity
- References
- Index