
- 320 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
Data Science, AI, and Machine Learning in Drug Development
About this book
The confluence of big data, artificial intelligence (AI), and machine learning (ML) has led to a paradigm shift in how innovative medicines are developed and healthcare delivered. To fully capitalize on these technological advances, it is essential to systematically harness data from diverse sources and leverage digital technologies and advanced analytics to enable data-driven decisions. Data science stands at a unique moment of opportunity to lead such a transformative change.
Intended to be a single source of information, Data Science, AI, and Machine Learning in Drug Research and Development covers a wide range of topics on the changing landscape of drug R & D, emerging applications of big data, AI and ML in drug development, and the build of robust data science organizations to drive biopharmaceutical digital transformations.
Features
- Provides a comprehensive review of challenges and opportunities as related to the applications of big data, AI, and ML in the entire spectrum of drug R & D
- Discusses regulatory developments in leveraging big data and advanced analytics in drug review and approval
- Offers a balanced approach to data science organization build
- Presents real-world examples of AI-powered solutions to a host of issues in the lifecycle of drug development
- Affords sufficient context for each problem and provides a detailed description of solutions suitable for practitioners with limited data science expertise
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Half Title
- Series Page
- Title Page
- Copyright Page
- Table of Contents
- Preface
- Contributors
- 1. Transforming Pharma with Data Science, AI and Machine Learning
- 2. Regulatory Perspective on Big Data, AI, and Machining Learning
- 3. Building an Agile and Scalable Data Science Organization
- 4. AI and Machine Learning in Drug Discovery
- 5. Predicting Anticancer Synergistic Activity through Machine Learning and Natural Language Processing
- 6. AI-Enabled Clinical Trials
- 7. Machine Learning for Precision Medicine
- 8. Reinforcement Learning in Personalized Medicine
- 9. Leveraging Machine Learning, Natural Language Processing, and Deep Learning in Drug Safety and Pharmacovigilance
- 10. Intelligent Manufacturing and Supply of Biopharmaceuticals
- 11. Reinventing Medical Affairs in the Era of Big Data and Analytics
- 12. Deep Learning with Electronic Health Record
- 13. Real-World Evidence for Treatment Access and Payment Decisions
- Index