Introduction to Deep Learning for Engineers
eBook - PDF

Introduction to Deep Learning for Engineers

Using Python and Google Cloud Platform

  1. English
  2. PDF
  3. Available on iOS & Android
eBook - PDF

Introduction to Deep Learning for Engineers

Using Python and Google Cloud Platform

About this book

This book provides a short introduction and easy-to-follow implementation steps of deep learning using Google Cloud Platform. It also includes a practical case study that highlights the utilization of Python and related libraries for running a pre-trained deep learning model.

In recent years, deep learning-based modeling approaches have been used in a wide variety of engineering domains, such as autonomous cars, intelligent robotics, computer vision, natural language processing, and bioinformatics. Also, numerous real-world engineering applications utilize an existing pre-trained deep learning model that has already been developed and optimized for a related task. However, incorporating a deep learning model in a research project is quite challenging, especially for someone who doesn't have related machine learning and cloud computing knowledge. Keeping that in mind, this book is intended to be a short introduction of deep learning basics through the example of a practical implementation case.

The audience of this short book is undergraduate engineering students who wish to explore deep learning models in their class project or senior design project without having a full journey through the machine learning theories. The case study part at the end also provides a cost-effective and step-by-step approach that can be replicated by others easily.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Introduction to Deep Learning for Engineers by Tariq M. Arif in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Industrial Design. We have over one million books available in our catalogue for you to explore.

Table of contents

  1. Cover
  2. Copyright Page
  3. Title Page
  4. Contents
  5. Preface
  6. Acknowledgments
  7. 1 Introduction: Python and Array Operations
  8. 2 Introduction to PyTorch
  9. 3 Basic Artificial Neural Network and Architectures
  10. 4 Introduction to Deep Learning
  11. 5 Deep Transfer Learning
  12. 6 Setting Up PyTorch and Google Cloud Platform Console
  13. 7 Case Study: Practical Implementation Through Transfer Learning
  14. Bibliography
  15. Author’s Biography