
Risk Modeling
Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning
- English
- ePUB (mobile friendly)
- Available on iOS & Android
Risk Modeling
Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning
About this book
A wide-ranging overview of the use of machine learning and AI techniques in financial risk management, including practical advice for implementation
Risk Modeling: Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning introduces readers to the use of innovative AI technologies for forecasting and evaluating financial risks. Providing up-to-date coverage of the practical application of current modelling techniques in risk management, this real-world guide also explores new opportunities and challenges associated with implementing machine learning and artificial intelligence (AI) into the risk management process.
Authors Terisa Roberts and Stephen Tonna provide readers with a clear understanding about the strengths and weaknesses of machine learning and AI while explaining how they can be applied to both everyday risk management problems and to evaluate the financial impact of extreme events such as global pandemics and changes in climate. Throughout the text, the authors clarify misconceptions about the use of machine learning and AI techniques using clear explanations while offering step-by-step advice for implementing the technologies into an organization's risk management model governance framework. This authoritative volume:
- Highlights the use of machine learning and AI in identifying procedures for avoiding or minimizing financial risk
- Discusses practical tools for assessing bias and interpretability of resultant models developed with machine learning algorithms and techniques
- Covers the basic principles and nuances of feature engineering and common machine learning algorithms
- Illustrates how risk modeling is incorporating machine learning and AI techniques to rapidly consume complex data and address current gaps in the end-to-end modelling lifecycle
- Explains how proprietary software and open-source languages can be combined to deliver the best of both worlds: for risk models and risk practitioners
Risk Modeling: Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning is an invaluable guide for CEOs, CROs, CFOs, risk managers, business managers, and other professionals working in risk management.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Table of Contents
- Title Page
- Copyright
- Acknowledgments
- Preface
- CHAPTER 1: Introduction
- CHAPTER 2: Data Management and Preparation
- CHAPTER 3: Artificial Intelligence, Machine Learning, and Deep Learning Models for Risk Management
- CHAPTER 4: Explaining Artificial Intelligence, Machine Learning, and Deep Learning Models
- CHAPTER 5: Bias, Fairness, and Vulnerability in Decision-Making
- CHAPTER 6: Machine Learning Model Deployment, Implementation, and Making Decisions
- CHAPTER 7: Extending the Governance Framework for Machine Learning Validation and Ongoing Monitoring
- CHAPTER 8: Optimizing Parameters for Machine Learning Models and Decisions in Production
- CHAPTER 9: The Interconnection between Climate and Financial Stability
- About the Authors
- Index
- End User License Agreement