Time-frequency Analysis of Seismic Signals
eBook - PDF

Time-frequency Analysis of Seismic Signals

  1. English
  2. PDF
  3. Available on iOS & Android
eBook - PDF

Time-frequency Analysis of Seismic Signals

About this book

A practical and insightful discussion of time-frequency analysis methods and technologies

Time–frequency analysis of seismic signals aims to reveal the local properties of nonstationary signals. The local properties, such as time-period, frequency, and spectral content, vary with time, and the time of a seismic signal is a proxy of geologic depth. Therefore, the time–frequency spectrum is composed of the frequency spectra that are generated by using the classic Fourier transform at different time positions.

Different time–frequency analysis methods are distinguished in the construction of the local kernel prior to using the Fourier transform. Based on the difference in constructing the Fourier transform kernel, this book categorises time–frequency analysis methods into two groups: Gabor transform-type methods and energy density distribution methods.

This book systematically presents time–frequency analysis methods, including technologies which have not been previously discussed in print or in which the author has been instrumental in developing. In the presentation of each method, the fundamental theory and mathematical concepts are summarised, with an emphasis on the engineering aspects.

This book also provides a practical guide to geophysicists who attempt to generate geophysically meaningful time–frequency spectra, who attempt to process seismic data with time-dependent operations for the fidelity of nonstationary signals, and who attempt to exploit the time–frequency space seismic attributes for quantitative characterisation of hydrocarbon reservoirs.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Time-frequency Analysis of Seismic Signals by Yanghua Wang in PDF and/or ePUB format, as well as other popular books in Physical Sciences & Energy. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Wiley
Year
2022
Print ISBN
9781119892342
eBook ISBN
9781119892359
Edition
1
Subtopic
Energy

Table of contents

  1. Cover
  2. Title Page
  3. Copyright
  4. Contents
  5. Preface
  6. 1 Nonstationary Signals and Spectral Properties
  7. 2 The Gabor Transform
  8. 3 The Continuous Wavelet Transform
  9. 4 The S Transform
  10. 5 The W Transform
  11. 6 The Wigner–Ville Distribution
  12. 7 Matching Pursuit
  13. 8 Local Power Spectra with Multiple Windows
  14. Appendices
  15. References
  16. Author Index
  17. Subject Index
  18. EULA