
- 272 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
About this book
This book walks you through learning probability and statistics from a Bayesian point of view.
From an introduction to probability theory through to frameworks for doing rigorous calculations of probability, it discusses Bayes' Theorem before illustrating how to use it in a variety of different situations with data addressing social and psychological issues.
The book also:
- Equips you with coding skills in the statistical modelling language Stan and programming language R.
- Discusses how Bayesian approaches to statistics compare to classical approaches.
- Introduces Markov Chain Monte Carlo methods for doing Bayesian statistics through computer simulations, so you understand how Bayesian solutions are implemented.
Features include an introduction to each chapter and a chapter summary to help you check your learning. All the examples and data used in the book are also available in the online resources so you can practice at your own pace.
For readers with some understanding of basic mathematical functions and notation, this book will get you up and running so you can do Bayesian statistics with confidence.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Half Title
- Publisher Note
- Title Page
- Copyright Page
- Acknowledgements
- Contents
- Illustration List
- Table List
- Discover the online resources
- About the Author
- Acknowledgements
- Preface
- One Probability
- Two Probability Distributions
- Three Models and Inference
- Four Relationship
- Five General Models
- Six Questionnaires and Non-Quantitative Responses
- Seven Multiple Issues
- References
- Index