Machine Learning Techniques for Text
eBook - ePub

Machine Learning Techniques for Text

Apply modern techniques with Python for text processing, dimensionality reduction, classification, and evaluation

  1. 448 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Machine Learning Techniques for Text

Apply modern techniques with Python for text processing, dimensionality reduction, classification, and evaluation

About this book

Take your Python text processing skills to another level by learning about the latest natural language processing and machine learning techniques with this full color guide

Key Features

  • Learn how to acquire and process textual data and visualize the key findings
  • Obtain deeper insight into the most commonly used algorithms and techniques and understand their tradeoffs
  • Implement models for solving real-world problems and evaluate their performance

Book Description

With the ever-increasing demand for machine learning and programming professionals, it's prime time to invest in the field. This book will help you in this endeavor, focusing specifically on text data and human language by steering a middle path among the various textbooks that present complicated theoretical concepts or focus disproportionately on Python code.

A good metaphor this work builds upon is the relationship between an experienced craftsperson and their trainee. Based on the current problem, the former picks a tool from the toolbox, explains its utility, and puts it into action. This approach will help you to identify at least one practical use for each method or technique presented. The content unfolds in ten chapters, each discussing one specific case study. For this reason, the book is solution-oriented. It's accompanied by Python code in the form of Jupyter notebooks to help you obtain hands-on experience. A recurring pattern in the chapters of this book is helping you get some intuition on the data and then implement and contrast various solutions.

By the end of this book, you'll be able to understand and apply various techniques with Python for text preprocessing, text representation, dimensionality reduction, machine learning, language modeling, visualization, and evaluation.

What you will learn

  • Understand fundamental concepts of machine learning for text
  • Discover how text data can be represented and build language models
  • Perform exploratory data analysis on text corpora
  • Use text preprocessing techniques and understand their trade-offs
  • Apply dimensionality reduction for visualization and classification
  • Incorporate and fine-tune algorithms and models for machine learning
  • Evaluate the performance of the implemented systems
  • Know the tools for retrieving text data and visualizing the machine learning workflow

Who this book is for

This book is for professionals in the area of computer science, programming, data science, informatics, business analytics, statistics, language technology, and more who aim for a gentle career shift in machine learning for text. Students in relevant disciplines that seek a textbook in the field will benefit from the practical aspects of the content and how the theory is presented. Finally, professors teaching a similar course will be able to pick pertinent topics in terms of content and difficulty. Beginner-level knowledge of Python programming is needed to get started with this book.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Machine Learning Techniques for Text by Nikos Tsourakis in PDF and/or ePUB format, as well as other popular books in Informatica & Modellazione e design di dati. We have over one million books available in our catalogue for you to explore.

Information

Table of contents

  1. Machine Learning Techniques for Text
  2. Acknowledgments
  3. Preface
  4. 1
  5. 2
  6. 3
  7. 4
  8. 5
  9. 6
  10. 7
  11. 8
  12. 9
  13. 10
  14. Index
  15. Other Books You May Enjoy