Intelligent Mobile Malware Detection
eBook - ePub

Intelligent Mobile Malware Detection

  1. 200 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

About this book

The popularity of Android mobile phones has caused more cybercriminals to create malware applications that carry out various malicious activities. The attacks, which escalated after the COVID-19 pandemic, proved there is great importance in protecting Android mobile devices from malware attacks. Intelligent Mobile Malware Detection will teach users how to develop intelligent Android malware detection mechanisms by using various graph and stochastic models. The book begins with an introduction to the Android operating system accompanied by the limitations of the state-of-the-art static malware detection mechanisms as well as a detailed presentation of a hybrid malware detection mechanism. The text then presents four different system call-based dynamic Android malware detection mechanisms using graph centrality measures, graph signal processing and graph convolutional networks. Further, the text shows how most of the Android malware can be detected by checking the presence of a unique subsequence of system calls in its system call sequence. All the malware detection mechanisms presented in the book are based on the authors' recent research. The experiments are conducted with the latest Android malware samples, and the malware samples are collected from public repositories. The source codes are also provided for easy implementation of the mechanisms. This book will be highly useful to Android malware researchers, developers, students and cyber security professionals to explore and build defense mechanisms against the ever-evolving Android malware.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Intelligent Mobile Malware Detection by Tony Thomas,Roopak Surendran,Teenu John,Mamoun Alazab,Teenu S. John in PDF and/or ePUB format, as well as other popular books in Computer Science & Computer Networking. We have over one million books available in our catalogue for you to explore.

Information

Table of contents

  1. Cover Page
  2. Half-Title Page
  3. Series Page
  4. Title Page
  5. Copyright Page
  6. Contents
  7. Preface
  8. Acknowledgements
  9. About the Authors
  10. Symbols
  11. 1 Internet and Android OS
  12. 2 Android Malware
  13. 3 Static Malware Detection
  14. 4 Dynamic and Hybrid Malware Detection
  15. 5 Detection Using Graph Centrality Measures
  16. 6 Graph Convolutional Network for Detection
  17. 7 Graph Signal Processing-Based Detection
  18. 8 System Call Pattern-Based Detection
  19. 9 Conclusions and Future Directions
  20. Appendix
  21. Bibliography
  22. Index