Machine Learning for Physics and Astronomy
eBook - PDF

Machine Learning for Physics and Astronomy

  1. 256 pages
  2. English
  3. PDF
  4. Available on iOS & Android
eBook - PDF

Machine Learning for Physics and Astronomy

About this book

A hands-on introduction to machine learning and its applications to the physical sciences

As the size and complexity of data continue to grow exponentially across the physical sciences, machine learning is helping scientists to sift through and analyze this information while driving breathtaking advances in quantum physics, astronomy, cosmology, and beyond. This incisive textbook covers the basics of building, diagnosing, optimizing, and deploying machine learning methods to solve research problems in physics and astronomy, with an emphasis on critical thinking and the scientific method. Using a hands-on approach to learning, Machine Learning for Physics and Astronomy draws on real-world, publicly available data as well as examples taken directly from the frontiers of research, from identifying galaxy morphology from images to identifying the signature of standard model particles in simulations at the Large Hadron Collider.

  • Introduces readers to best practices in data-driven problem-solving, from preliminary data exploration and cleaning to selecting the best method for a given task
  • Each chapter is accompanied by Jupyter Notebook worksheets in Python that enable students to explore key concepts
  • Includes a wealth of review questions and quizzes
  • Ideal for advanced undergraduate and early graduate students in STEM disciplines such as physics, computer science, engineering, and applied mathematics
  • Accessible to self-learners with a basic knowledge of linear algebra and calculus
  • Slides and assessment questions (available only to instructors)

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Machine Learning for Physics and Astronomy by Viviana Acquaviva in PDF and/or ePUB format, as well as other popular books in Physical Sciences & Science Research & Methodology. We have over one million books available in our catalogue for you to explore.

Table of contents

  1. Cover
  2. Contents
  3. Preface
  4. 1. Introduction to Machine Learning Methods
  5. 2. First Supervised Models: Neighbors and Trees
  6. 3. Supervised Classification: Evaluation and Diagnostics
  7. 4. Supervised Learning Models: Optimization
  8. 5. Regression
  9. 6. Ensemble Methods
  10. 7. Clustering and Dimensionality Reduction
  11. 8. Introduction to Neural Networks
  12. 9. Summary and Additional Resources
  13. References
  14. Index