Model-Based Clustering, Classification, and Density Estimation Using mclust in R
eBook - ePub

Model-Based Clustering, Classification, and Density Estimation Using mclust in R

  1. 242 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Model-Based Clustering, Classification, and Density Estimation Using mclust in R

About this book

Model-based clustering and classification methods provide a systematic statistical approach to clustering, classification, and density estimation via mixture modeling. The model-based framework allows the problems of choosing or developing an appropriate clustering or classification method to be understood within the context of statistical modeling. The mclust package for the statistical environment R is a widely adopted platform implementing these model-based strategies. The package includes both summary and visual functionality, complementing procedures for estimating and choosing models.

Key features of the book:

  • An introduction to the model-based approach and the mclust R package
  • A detailed description of mclust and the underlying modeling strategies
  • An extensive set of examples, color plots, and figures along with the R code for reproducing them
  • Supported by a companion website, including the R code to reproduce the examples and figures presented in the book, errata, and other supplementary material

Model-Based Clustering, Classification, and Density Estimation Using mclust in R is accessible to quantitatively trained students and researchers with a basic understanding of statistical methods, including inference and computing. In addition to serving as a reference manual for mclust, the book will be particularly useful to those wishing to employ these model-based techniques in research or applications in statistics, data science, clinical research, social science, and many other disciplines.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Model-Based Clustering, Classification, and Density Estimation Using mclust in R by Luca Scrucca,Chris Fraley,T. Brendan Murphy,Adrian E. Raftery,Raftery Adrian E. in PDF and/or ePUB format, as well as other popular books in Mathematics & Statistics for Business & Economics. We have over one million books available in our catalogue for you to explore.

Table of contents

  1. Cover Page
  2. Half-Title Page
  3. Series Page
  4. Title Page
  5. Copyright Page
  6. Dedication Page
  7. Contents
  8. List of Figures
  9. List of Tables
  10. List of Examples
  11. Preface
  12. 1 Introduction
  13. 2 Finite Mixture Models
  14. 3 Model-Based Clustering
  15. 4 Mixture-Based Classification
  16. 5 Model-Based Density Estimation
  17. 6 Visualizing Gaussian Mixture Models
  18. 7 Miscellanea
  19. Bibliography
  20. Index