R Data Mining
eBook - ePub

R Data Mining

  1. 442 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

R Data Mining

About this book

Mine valuable insights from your data using popular tools and techniques in R

Key Features

  • Understand the basics of data mining and why R is a perfect tool for it.
  • Manipulate your data using popular R packages such as ggplot2, dplyr, and so on to gather valuable business insights from it.
  • Apply effective data mining models to perform regression and classification tasks.

Book Description

R is widely used to leverage data mining techniques across many different industries, including finance, medicine, scientific research, and more. This book will empower you to produce and present impressive analyses from data, by selecting and implementing the appropriate data mining techniques in R.It will let you gain these powerful skills while immersing in a one of a kind data mining crime case, where you will be requested to help resolving a real fraud case affecting a commercial company, by the mean of both basic and advanced data mining techniques. While moving along the plot of the story you will effectively learn and practice on real data the various R packages commonly employed for this kind of tasks. You will also get the chance of apply some of the most popular and effective data mining models and algos, from the basic multiple linear regression to the most advanced Support Vector Machines. Unlike other data mining learning instruments, this book will effectively expose you the theory behind these models, their relevant assumptions and when they can be applied to the data you are facing. By the end of the book you will hold a new and powerful toolbox of instruments, exactly knowing when and how to employ each of them to solve your data mining problems and get the most out of your data.Finally, to let you maximize the exposure to the concepts described and the learning process, the book comes packed with a reproducible bundle of commented R scripts and a practical set of data mining models cheat sheets.

What you will learn

  • Master relevant packages such as dplyr, ggplot2 and so on for data mining
  • Learn how to effectively organize a data mining project through the CRISP-DM methodology
  • Implement data cleaning and validation tasks to get your data ready for data mining activities
  • Execute Exploratory Data Analysis both the numerical and the graphical way
  • Develop simple and multiple regression models along with logistic regression
  • Apply basic ensemble learning techniques to join together results from different data mining models
  • Perform text mining analysis from unstructured pdf files and textual data
  • Produce reports to effectively communicate objectives, methods, and insights of your analyses

Who this book is for

If you are a budding data scientist, or a data analyst with a basic knowledge of R, and want to get into the intricacies of data mining in a practical manner, this is the book for you. No previous experience of data mining is required.

]]>

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere β€” even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access R Data Mining by Andrea Cirillo in PDF and/or ePUB format, as well as other popular books in Computer Science & Data Mining. We have over one million books available in our catalogue for you to explore.

Information

Table of contents

  1. Title Page
  2. Copyright
  3. Credits
  4. About the Author
  5. About the Reviewers
  6. www.PacktPub.com
  7. Customer Feedback
  8. Preface
  9. Why to Choose R for Your Data Mining and Where to Start
  10. A First Primer on Data Mining Analysing Your Bank Account Data
  11. The Data Mining Process - CRISP-DM Methodology
  12. Keeping the House Clean – The Data Mining Architecture
  13. How to Address a Data Mining Problem – Data Cleaning and Validation
  14. Looking into Your Data Eyes – Exploratory Data Analysis
  15. Our First Guess – a Linear Regression
  16. A Gentle Introduction to Model Performance Evaluation
  17. Don't Give up – Power up Your Regression Including Multiple Variables
  18. A Different Outlook to Problems with Classification Models
  19. The Final Clash – Random Forests and Ensemble Learning
  20. Looking for the Culprit – Text Data Mining with R
  21. Sharing Your Stories with Your Stakeholders through R Markdown
  22. Epilogue
  23. Dealing with Dates, Relative Paths and Functions