
- 290 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
Linear Algebra With Machine Learning and Data
About this book
This book takes a deep dive into several key linear algebra subjects as they apply to data analytics and data mining. The book offers a case study approach where each case will be grounded in a real-world application.
This text is meant to be used for a second course in applications of Linear Algebra to Data Analytics, with a supplemental chapter on Decision Trees and their applications in regression analysis. The text can be considered in two different but overlapping general data analytics categories: clustering and interpolation.
Knowledge of mathematical techniques related to data analytics and exposure to interpretation of results within a data analytics context are particularly valuable for students studying undergraduate mathematics. Each chapter of this text takes the reader through several relevant case studies using real-world data.
All data sets, as well as Python and R syntax, are provided to the reader through links to Github documentation. Following each chapter is a short exercise set in which students are encouraged to use technology to apply their expanding knowledge of linear algebra as it is applied to data analytics.
A basic knowledge of the concepts in a first Linear Algebra course is assumed; however, an overview of key concepts is presented in the Introduction and as needed throughout the text.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover Page
- Half-Title Page
- Series Page
- Title Page
- Copyright Page
- Contents
- Acknowledgments
- Preface
- Introduction
- 1 Graph Theory
- 2 Stochastic Processes
- 3 SVD and PCA
- 4 Interpolation
- 5 Optimization and Learning Techniques for Regression
- 6 Decision Trees and Random Forests
- 7 Random Matrices and Covariance Estimate
- 8 Sample Solutions to Exercises
- Github Links
- Bibliography
- Index