
- 376 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
About this book
This book aims to increase the visibility of data science in real-world, which differs from what you learn from a typical textbook. Many aspects of day-to-day data science work are almost absent from conventional statistics, machine learning, and data science curriculum. Yet these activities account for a considerable share of the time and effort for data professionals in the industry. Based on industry experience, this book outlines real-world scenarios and discusses pitfalls that data science practitioners should avoid. It also covers the big data cloud platform and the art of data science, such as soft skills. The authors use R as the primary tool and provide code for both R and Python.
This book is for readers who want to explore possible career paths and eventually become data scientists. This book comprehensively introduces various data science fields, soft and programming skills in data science projects, and potential career paths. Traditional data-related practitioners such as statisticians, business analysts, and data analysts will find this book helpful in expanding their skills for future data science careers. Undergraduate and graduate students from analytics-related areas will find this book beneficial to learn real-world data science applications. Non-mathematical readers will appreciate the reproducibility of the companion R and python codes.
Key Features:
• It covers both technical and soft skills.
• It has a chapter dedicated to the big data cloud environment. For industry applications, the practice of data science is often in such an environment.
• It is hands-on. We provide the data and repeatable R and Python code in notebooks. Readers can repeat the analysis in the book using the data and code provided. We also suggest that readers modify the notebook to perform analyses with their data and problems, if possible. The best way to learn data science is to do it!
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover Page
- Half-Title Page
- Series Page
- Title Page
- Copyright Page
- Contents
- List of Figures
- Preface
- About the Authors
- Acknowledgment
- 1 Introduction
- 2 Soft Skills for Data Scientists
- 3 Introduction to the Data
- 4 Big Data Cloud Platform
- 5 Data Pre-processing
- 6 Data Wrangling
- 7 Model Tuning Strategy
- 8 Measuring Performance
- 9 Regression Models
- 10 Regularization Methods
- 11 Tree-Based Methods
- 12 Deep Learning
- A Handling Large Local Data
- B R Code for Data Simulation
- Bibliography
- Index