Spectral method for fatigue damage estimation with non-zero mean stress
eBook - ePub

Spectral method for fatigue damage estimation with non-zero mean stress

  1. 68 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Spectral method for fatigue damage estimation with non-zero mean stress

About this book

This thesis consists of a fatigue study carried out on an aluminum alloy 2024-T3 in both time domain and frequency domain. Non-zero mean random signals of strain and stress are analyzed in time domain using usual Rainflow method and the damage is accumulated with the Palmgren-Miner rule, according to mean stress equations. The signals are analyzed in frequency domain using the power spectral density and the probability density function. The spectral domain analysis does not consider the negative effect of the mean stress in metal life under fatigue, so the correction factors for mean stresses developed by Goodman, Morrow, and Smith-Watson-Topper are used to change the power spectral density and, thus, the damage calculated by the probability density functions postulated by Dirlik and Tovo and Benasciutti. It is found that both Dirlik and Tovo and Benasciutti are non-conservative for a non-zero mean stress signal when comparing the damage to the one obtained in time domain analysis. When the spectral method is corrected, the results vary from Rainflow 4.9% for wide band and 6.8% for narrow band signals, always in the conservative zone, therefore predicting more damage. Tovo and Benasciutti 2 method is found to be the spectral function with the closest results when compared to the usual Rainflow method in time domain.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Spectral method for fatigue damage estimation with non-zero mean stress by Pedro H. Alves Corrêa in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Engineering General. We have over one million books available in our catalogue for you to explore.

Table of contents

  1. Capa
  2. Folha de Rosto
  3. Créditos
  4. 1. Introduction
  5. 2. Theoretical Fundamentals
  6. 3. Materials and Methods
  7. 4. Numerical and Experimental Results and Discussion
  8. 5. Conclusion
  9. 6. Suggestion for Future Researches
  10. 7. Appendix 1 Free Vibration of a Cantilever Bean
  11. 8. References