Building a Recommendation System with R
eBook - ePub

Building a Recommendation System with R

  1. 158 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Building a Recommendation System with R

About this book

Learn the art of building robust and powerful recommendation engines using R

About This Book

  • Learn to exploit various data mining techniques
  • Understand some of the most popular recommendation techniques
  • This is a step-by-step guide full of real-world examples to help you build and optimize recommendation engines

Who This Book Is For

If you are a competent developer with some knowledge of machine learning and R, and want to further enhance your skills to build recommendation systems, then this book is for you.

What You Will Learn

  • Get to grips with the most important branches of recommendation
  • Understand various data processing and data mining techniques
  • Evaluate and optimize the recommendation algorithms
  • Prepare and structure the data before building models
  • Discover different recommender systems along with their implementation in R
  • Explore various evaluation techniques used in recommender systems
  • Get to know about recommenderlab, an R package, and understand how to optimize it to build efficient recommendation systems

In Detail

A recommendation system performs extensive data analysis in order to generate suggestions to its users about what might interest them. R has recently become one of the most popular programming languages for the data analysis. Its structure allows you to interactively explore the data and its modules contain the most cutting-edge techniques thanks to its wide international community. This distinctive feature of the R language makes it a preferred choice for developers who are looking to build recommendation systems.

The book will help you understand how to build recommender systems using R. It starts off by explaining the basics of data mining and machine learning. Next, you will be familiarized with how to build and optimize recommender models using R. Following that, you will be given an overview of the most popular recommendation techniques. Finally, you will learn to implement all the concepts you have learned throughout the book to build a recommender system.

Style and approach

This is a step-by-step guide that will take you through a series of core tasks. Every task is explained in detail with the help of practical examples.

Tools to learn more effectively

Saving Books

Saving Books

Keyword Search

Keyword Search

Annotating Text

Annotating Text

Listen to it instead

Listen to it instead

Building a Recommendation System with R


Table of Contents

Building a Recommendation System with R
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Support files, eBooks, discount offers, and more
Why subscribe?
Free access for Packt account holders
Preface
What this book covers
What you need for this book
Who this book is for
Citation
Conventions
Reader feedback
Customer support
Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions
1. Getting Started with Recommender Systems
Understanding recommender systems
The structure of the book
Collaborative filtering recommender systems
Content-based recommender systems
Knowledge-based recommender systems
Hybrid systems
Evaluation techniques
A case study
The future scope
Summary
2. Data Mining Techniques Used in Recommender Systems
Solving a data analysis problem
Data preprocessing techniques
Similarity measures
Euclidian distance
Cosine distance
Pearson correlation
Dimensionality reduction
Principal component analysis
Data mining techniques
Cluster analysis
Explaining the k-means cluster algorithm
Support vector machine
Decision trees
Ensemble methods
Bagging
Random forests
Boosting
Evaluating data-mining algorithms
Summary
3. Recommender Systems
R package for recommendation – recommenderlab
Datasets
Jester5k, MSWeb, and MovieLense
The class for rating matrices
Computing the similarity matrix
Recommendation models
Data exploration
Exploring the nature of the data
Exploring the values of the rating
Exploring which movies have been viewed
Exploring the average ratings
Visualizing the matrix
Data preparation
Selecting the most relevant data
Exploring the most relevant data
Normalizing the data
Binarizing the data
Item-based collaborative filtering
Defining the training and test sets
Building the recommendation model
Exploring the recommender model
Applying the recommender model on the test set
User-based collaborative filtering
Building the recommendation model
Applying the recommender model on the test set
Collaborative filtering on binary data
Data preparation
Item-based collaborative filtering on binary data
User-based collaborative filtering on binary data
Conclusions about collaborative filtering
Limitations of collaborative filtering
Content-based filtering
Hybrid recommender systems
Knowledge-based recommender systems
Summary
4. Evaluating the Recommender Systems
Preparing the data to evaluate the models
Splitting the data
Bootstrapping data
Using k-fold to validate models
Evaluating recommender techniques
Evaluating the ratings
Evaluating the recommendations
Identifying the most suitable model
Comparing models
Identifying the most suitable model
Optimizing a numeric parameter
Summary
5. Case Study – Building Your Own Recommendation Engine
Preparing the data
Description of the data
Importing the data
Defining a rating matrix
Extracting item attributes
Building the model
Evaluating and optimizing the model
Building a function to evaluate the model
Optimizing the model parameters
Summary
A. References
Index

Building a Recommendation System with R

Copyright © 2015 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been ma...

Table of contents

  1. Building a Recommendation System with R

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn how to download books offline
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 990+ topics, we’ve got you covered! Learn about our mission
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more about Read Aloud
Yes! You can use the Perlego app on both iOS and Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app
Yes, you can access Building a Recommendation System with R by Suresh K. Gorakala, Michele Usuelli in PDF and/or ePUB format, as well as other popular books in Computer Science & Computer Science General. We have over one million books available in our catalogue for you to explore.