
Data Exfiltration Threats and Prevention Techniques
Machine Learning and Memory-Based Data Security
- English
- PDF
- Available on iOS & Android
Data Exfiltration Threats and Prevention Techniques
Machine Learning and Memory-Based Data Security
About this book
DATA EXFILTRATION THREATS AND PREVENTION TECHNIQUES
Comprehensive resource covering threat prevention techniques for data exfiltration and applying machine learning applications to aid in identification and prevention
Data Exfiltration Threats and Prevention Techniques provides readers the knowledge needed to prevent and protect from malware attacks by introducing existing and recently developed methods in malware protection using AI, memory forensic, and pattern matching, presenting various data exfiltration attack vectors and advanced memory-based data leakage detection, and discussing ways in which machine learning methods have a positive impact on malware detection.
Providing detailed descriptions of the recent advances in data exfiltration detection methods and technologies, the authors also discuss details of data breach countermeasures and attack scenarios to show how the reader may identify a potential cyber attack in the real world.
Composed of eight chapters, this book presents a better understanding of the core issues related to the cyber-attacks as well as the recent methods that have been developed in the field.
In Data Exfiltration Threats and Prevention Techniques, readers can expect to find detailed information on:
- Sensitive data classification, covering text pre-processing, supervised text classification, automated text clustering, and other sensitive text detection approaches
- Supervised machine learning technologies for intrusion detection systems, covering taxonomy and benchmarking of supervised machine learning techniques
- Behavior-based malware detection using API-call sequences, covering API-call extraction techniques and detecting data stealing behavior based on API-call sequences
- Memory-based sensitive data monitoring for real-time data exfiltration detection and advanced time delay data exfiltration attack and detection
Aimed at professionals and students alike, Data Exfiltration Threats and Prevention Techniques highlights a range of machine learning methods that can be used to detect potential data theft and identifies research gaps and the potential to make change in the future as technology continues to grow.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Title Page
- Copyright
- Contents
- About the Authors
- Acknowledgments
- Acronyms
- Abstract
- Chapter 1 Introduction
- Chapter 2 Background
- Chapter 3 Data Security Threats
- Chapter 4 Use Cases Data Leakage Attacks
- Chapter 5 Survey on Building Block Technologies
- Chapter 6 Behavior‐Based Data Exfiltration Detection Methods
- Chapter 7 Memory‐Based Data Exfiltration Detection Methods
- Chapter 8 Temporal‐Based Data Exfiltration Detection Methods
- Chapter 9 Conclusion
- Index
- EULA