
- English
- PDF
- Available on iOS & Android
About this book
Suitable for a first year graduate course, this textbook unites the applications of numerical mathematics and scientific computing to the practice of chemical engineering. Written in a pedagogic style, the book describes basic linear and nonlinear algebric systems all the way through to stochastic methods, Bayesian statistics and parameter estimation. These subjects are developed at a level of mathematics suitable for graduate engineering study without the exhaustive level of the theoretical mathematical detail. The implementation of numerical methods in MATLAB is integrated within each chapter and numerous examples in chemical engineering are provided, with a library of corresponding MATLAB programs. This book will provide the graduate student with essential tools required by industry and research alike. Supplementary material includes solutions to homework problems set in the text, MATLAB programs and tutorial, lecture slides, and complicated derivations for the more advanced reader. These are available online at www.cambridge.org/9780521859714.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Half-title
- Title
- Copyright
- Contents
- Preface
- 1 Linear algebra
- 2 Nonlinear algebraic systems
- 3 Matrix eigenvalue analysis
- 4 Initial value problems
- 5 Numerical optimization
- 6 Boundary value problems
- 7 Probability theory and stochastic simulation
- 8 Bayesian statistics and parameter estimation
- 9 Fourier analysis
- References
- Index