Mesoscale Dynamics
About this book
Mesoscale weather systems are responsible for numerous natural disasters, such as damaging winds, blizzards and flash flooding. A fundamental understanding of the underlying dynamics involved in these weather systems is essential in forecasting their occurrence. This 2007 book provides a systematic approach to this subject. The opening chapters introduce the basic equations governing mesoscale weather systems and their approximations. The subsequent chapters cover four major areas of mesoscale dynamics: wave dynamics, moist convection, front dynamics and mesoscale modelling. This is an ideal book on the subject for researchers in meteorology and atmospheric science. With over 100 problems, and password-protected solutions available to instructors at www.cambridge.org/9780521808750, this book could also serve as a textbook for graduate students. Modelling projects, providing hands-on practice for building simple models of stratified fluid flow from a one-dimensional advection equation, are also described.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- MESOSCALE DYNAMICS
- Title
- Copyright
- Contents
- Preface
- 1 Overview
- 2 Governing equations for mesoscale motions
- 3 Basic wave dynamics
- 4 Mesoscale wave generation and maintenance
- 5 Orographically forced flows
- 6 Thermally forced flows
- 7 Mesoscale instabilities
- 8 Isolated convective storms
- 9 Mesoscale convective systems
- 10 Dynamics of fronts and jet streaks
- 11 Dynamics of orographic precipitation
- 12 Basic numerical methods
- 13 Numerical modeling of geophysical fluid systems
- 14 Parameterizations of physical processes
- Appendices
- Index
